2 resultados para Motor Activity
em DRUM (Digital Repository at the University of Maryland)
Resumo:
An economy of effort is a core characteristic of highly skilled motor performance often described as being effortless or automatic. Electroencephalographic (EEG) evaluation of cortical activity in elite performers has consistently revealed a reduction in extraneous associative cortical activity and an enhancement of task-relevant cortical processes. However, this has only been demonstrated under what are essentially practice-like conditions. Recently it has been shown that cerebral cortical activity becomes less efficient when performance occurs in a stressful, complex social environment. This dissertation examines the impact of motor skill training or practice on the EEG cortical dynamics that underlie performance in a stressful, complex social environment. Sixteen ROTC cadets participated in head-to-head pistol shooting competitions before and after completing nine sessions of skill training over three weeks. Spectral power increased in the theta frequency band and decreased in the low alpha frequency band after skill training. EEG Coherence increased in the left frontal region and decreased in the left temporal region after the practice intervention. These suggest a refinement of cerebral cortical dynamics with a reduction of task extraneous processing in the left frontal region and an enhancement of task related processing in the left temporal region consistent with the skill level reached by participants. Partitioning performance into ‘best’ and ‘worst’ based on shot score revealed that deliberate practice appears to optimize cerebral cortical activity of ‘best’ performances which are accompanied by a reduction in task-specific processes reflected by increased high-alpha power, while ‘worst’ performances are characterized by an inappropriate reduction in task-specific processing resulting in a loss of focus reflected by higher high-alpha power after training when compared to ‘best’ performances. Together, these studies demonstrate the power of experience afforded by practice, as a controllable factor, to promote resilience of cerebral cortical efficiency in complex environments.
Resumo:
Mental stress is known to disrupt the execution of motor performance and can lead to decrements in the quality of performance, however, individuals have shown significant differences regarding how fast and well they can perform a skilled task according to how well they can manage stress and emotion. The purpose of this study was to advance our understanding of how the brain modulates emotional reactivity under different motivational states to achieve differential performance in a target shooting task that requires precision visuomotor coordination. In order to study the interactions in emotion regulatory brain areas (i.e. the ventral striatum, amygdala, prefrontal cortex) and the autonomic nervous system, reward and punishment interventions were employed and the resulting behavioral and physiological responses contrasted to observe the changes in shooting performance (i.e. shooting accuracy and stability of aim) and neuro-cognitive processes (i.e. cognitive load and reserve) during the shooting task. Thirty-five participants, aged 18 to 38 years, from the Reserve Officers’ Training Corp (ROTC) at the University of Maryland were recruited to take 30 shots at a bullseye target in three different experimental conditions. In the reward condition, $1 was added to their total balance for every 10-point shot. In the punishment condition, $1 was deducted from their total balance if they did not hit the 10-point area. In the neutral condition, no money was added or deducted from their total balance. When in the reward condition, which was reportedly most enjoyable and least stressful of the conditions, heart rate variability was found to be positively related to shooting scores, inversely related to variability in shooting performance and positively related to alpha power (i.e. less activation) in the left temporal region. In the punishment (and most stressful) condition, an increase in sympathetic response (i.e. increased LF/HF ratio) was positively related to jerking movements as well as variability of placement (on the target) in the shots taken. This, coupled with error monitoring activity in the anterior cingulate cortex, suggests evaluation of self-efficacy might be driving arousal regulation, thus affecting shooting performance. Better performers showed variable, increasing high-alpha power in the temporal region during the aiming period towards taking the shot which could indicate an adaptive strategy of engagement. They also showed lower coherence during hit shots than missed shots which was coupled with reduced jerking movements and better precision and accuracy. Frontal asymmetry measures revealed possible influence of the prefrontal lobe in driving this effect in reward and neutral conditions. The possible interactions, reasons behind these findings and implications are discussed.