5 resultados para Motivation. English learning task. Interactive Whiteboard
em DRUM (Digital Repository at the University of Maryland)
Resumo:
This quantitative study examines the impact of teacher practices on student achievement in classrooms where the English is Fun Interactive Radio Instruction (IRI) programs were being used. A contemporary IRI design using a dual-audience approach, the English is Fun IRI programs delivered daily English language instruction to students in grades 1 and 2 in Delhi and Rajasthan through 120 30-minute programs via broadcast radio (the first audience) while modeling pedagogical techniques and behaviors for their teachers (the second audience). Few studies have examined how the dual-audience approach influences student learning. Using existing data from 32 teachers and 696 students, this study utilizes a multivariate multilevel model to examine the role of the primary expectations for teachers (e.g., setting up the IRI classroom, following instructions from the radio characters and ensuring students are participating) and the role of secondary expectations for teachers (e.g., modeling pedagogies and facilitating learning beyond the instructions) in promoting students’ learning in English listening skills, knowledge of vocabulary and use of sentences. The study finds that teacher practice on both sets of expectations mattered, but that practice in the secondary expectations mattered more. As expected, students made the smallest gains in the most difficult linguistic task (sentence use). The extent to which teachers satisfied the primary and secondary expectations was associated with gains in all three skills – confirming the relationship between students’ English proficiency and teacher practice in a dual-audience program. When it came to gains in students’ scores in sentence use, a teacher whose focus was greater on primary expectations had a negative effect on student performance in both states. In all, teacher practice clearly mattered but not in the same way for all three skills. An optimal scenario for teacher practice is presented in which gains in all three skills are maximized. These findings have important implications for the way the classroom teacher is cast in IRI programs that utilize a dual-audience approach and in the way IRI programs are contracted insofar as the role of the teacher in instruction is minimized and access is limited to instructional support from the IRI lessons alone.
Resumo:
Socioeconomic status (SES) influences language and cognitive development, with discrepancies particularly noticeable in vocabulary development. This study examines how SES-related differences impact the development of syntactic processing, cognitive inhibition, and word learning. 38 4-5-year-olds from higher- and lower-SES backgrounds completed a word-learning task, in which novel words were embedded in active and passive sentences. Critically, unlike the active sentences, all passive sentences required a syntactic revision. Measures of cognitive inhibition were obtained through a modified Stroop task. Results indicate that lower-SES participants had more difficulty using inhibitory functions to resolve conflict compared to their higher-SES counterparts. However, SES did not impact language processing, as the language outcomes were similar across SES background. Additionally, stronger inhibitory processes were related to better language outcomes in the passive sentence condition. These results suggest that cognitive inhibition impact language processing, but this function may vary across children from different SES backgrounds
Resumo:
Early human development offers a unique perspective in investigating the potential cognitive and social implications of action and perception. Specifically, during infancy, action production and action perception undergo foundational developments. One essential component to examine developments in action processing is the analysis of others’ actions as meaningful and goal-directed. Little research, however, has examined the underlying neural systems that may be associated with emerging action and perception abilities, and infants’ learning of goal-directed actions. The current study examines the mu rhythm—a brain oscillation found in the electroencephalogram (EEG)—that has been associated with action and perception. Specifically, the present work investigates whether the mu signal is related to 9-month-olds’ learning of a novel goal-directed means-end task. The findings of this study demonstrate a relation between variations in mu rhythm activity and infants’ ability to learn a novel goal-directed means-end action task (compared to a visual pattern learning task used as a comparison task). Additionally, we examined the relations between standardized assessments of early motor competence, infants’ ability to learn a novel goal-directed task, and mu rhythm activity. We found that: 1a) mu rhythm activity during observation of a grasp uniquely predicted infants’ learning on the cane training task, 1b) mu rhythm activity during observation and execution of a grasp did not uniquely predict infants’ learning on the visual pattern learning task (comparison learning task), 2) infants’ motor competence did not predict infants’ learning on the cane training task, 3) mu rhythm activity during observation and execution was not related to infants’ measure of motor competence, and 4) mu rhythm activity did not predict infants’ learning on the cane task above and beyond infants’ motor competence. The results from this study demonstrate that mu rhythm activity is a sensitive measure to detect individual differences in infants’ action and perception abilities, specifically their learning of a novel goal-directed action.
Resumo:
We propose three research problems to explore the relations between trust and security in the setting of distributed computation. In the first problem, we study trust-based adversary detection in distributed consensus computation. The adversaries we consider behave arbitrarily disobeying the consensus protocol. We propose a trust-based consensus algorithm with local and global trust evaluations. The algorithm can be abstracted using a two-layer structure with the top layer running a trust-based consensus algorithm and the bottom layer as a subroutine executing a global trust update scheme. We utilize a set of pre-trusted nodes, headers, to propagate local trust opinions throughout the network. This two-layer framework is flexible in that it can be easily extensible to contain more complicated decision rules, and global trust schemes. The first problem assumes that normal nodes are homogeneous, i.e. it is guaranteed that a normal node always behaves as it is programmed. In the second and third problems however, we assume that nodes are heterogeneous, i.e, given a task, the probability that a node generates a correct answer varies from node to node. The adversaries considered in these two problems are workers from the open crowd who are either investing little efforts in the tasks assigned to them or intentionally give wrong answers to questions. In the second part of the thesis, we consider a typical crowdsourcing task that aggregates input from multiple workers as a problem in information fusion. To cope with the issue of noisy and sometimes malicious input from workers, trust is used to model workers' expertise. In a multi-domain knowledge learning task, however, using scalar-valued trust to model a worker's performance is not sufficient to reflect the worker's trustworthiness in each of the domains. To address this issue, we propose a probabilistic model to jointly infer multi-dimensional trust of workers, multi-domain properties of questions, and true labels of questions. Our model is very flexible and extensible to incorporate metadata associated with questions. To show that, we further propose two extended models, one of which handles input tasks with real-valued features and the other handles tasks with text features by incorporating topic models. Our models can effectively recover trust vectors of workers, which can be very useful in task assignment adaptive to workers' trust in the future. These results can be applied for fusion of information from multiple data sources like sensors, human input, machine learning results, or a hybrid of them. In the second subproblem, we address crowdsourcing with adversaries under logical constraints. We observe that questions are often not independent in real life applications. Instead, there are logical relations between them. Similarly, workers that provide answers are not independent of each other either. Answers given by workers with similar attributes tend to be correlated. Therefore, we propose a novel unified graphical model consisting of two layers. The top layer encodes domain knowledge which allows users to express logical relations using first-order logic rules and the bottom layer encodes a traditional crowdsourcing graphical model. Our model can be seen as a generalized probabilistic soft logic framework that encodes both logical relations and probabilistic dependencies. To solve the collective inference problem efficiently, we have devised a scalable joint inference algorithm based on the alternating direction method of multipliers. The third part of the thesis considers the problem of optimal assignment under budget constraints when workers are unreliable and sometimes malicious. In a real crowdsourcing market, each answer obtained from a worker incurs cost. The cost is associated with both the level of trustworthiness of workers and the difficulty of tasks. Typically, access to expert-level (more trustworthy) workers is more expensive than to average crowd and completion of a challenging task is more costly than a click-away question. In this problem, we address the problem of optimal assignment of heterogeneous tasks to workers of varying trust levels with budget constraints. Specifically, we design a trust-aware task allocation algorithm that takes as inputs the estimated trust of workers and pre-set budget, and outputs the optimal assignment of tasks to workers. We derive the bound of total error probability that relates to budget, trustworthiness of crowds, and costs of obtaining labels from crowds naturally. Higher budget, more trustworthy crowds, and less costly jobs result in a lower theoretical bound. Our allocation scheme does not depend on the specific design of the trust evaluation component. Therefore, it can be combined with generic trust evaluation algorithms.
Resumo:
By law, Title I schools employ teachers who are both competent in their subject knowledge and State certified. In addition, Title I teachers receive ongoing professional development in technology integration and are equipped with the latest innovative resources to integrate technology in the classroom. The aim is higher academic achievement and the effective use of technology in the classroom. The investment to implement technology in this large urban school district to improve student achievement has continued to increase. In order to infuse current and emerging technology throughout the curriculum, this school district needs to know where teachers have, and have not, integrated technology. Yet the level of how technology is integrated in Title I schools is unknown. This study used the Digital-Age Survey Levels of Teaching Innovation (LoTi) to assess 508 Title I teachers’ technology integration levels using three major initiatives purchased by Title I— the iPads program, the Chromebook initiative, and the interactive whiteboards program. The study used a quantitative approach. Descriptive statistics, regression analysis, and statistical correlations were used to examine the relationship between the level of technology integration and the following dependent variables: personal computer use (PCU), current instructional practices (CIP), and levels of teaching innovation (LoTi). With this information, budgetary decisions and professional development can be tailored to the meet the technology implementation needs of this district. The result of this study determined a significant relationship between the level of teaching innovation, personal computer use, and current instructional practices with teachers who teach with iPad, Chromebook, and/or interactive whiteboard. There was an increase in LoTi, PCU, and CIP scores with increasing years of experience of Title I teachers. There was also a significant relationship between teachers with 20 years or more teaching experience and their LoTi score.