4 resultados para Molecular biology|Genetics

em DRUM (Digital Repository at the University of Maryland)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Group A Streptococcus (GAS), or Streptococcus pyogenes, is a strict human pathogen that colonizes a variety of sites within the host. Infections can vary from minor and easily treatable, to life-threatening, invasive forms of disease. In order to adapt to niches, GAS utilizes environmental cues, such as carbohydrates, to coordinate the expression of virulence factors. Research efforts to date have focused on identifying how either components of the phosphoenolpyruvate-phosphotransferase system (PTS) or global transcriptional networks affect the regulation of virulence factors, but not the synergistic relationship between the two. The present study investigates the role of a putative PTS-fructose operon encoded by fruRBA and its role in virulence in the M1T1 strain 5448. Growth in fructose resulted in induction of fruRBA. RT-PCR showed that fruRBA formed an operon, which was repressed by FruR in the absence of fructose. Growth and carbon utilization profiles revealed that although the entire fruRBA operon was required for growth in fructose, FruA was the main fructose transporter. The ability of both ΔfruR and ΔfruB mutants to survive in whole human blood or neutrophils was impaired. However, the phenotypes were not reproduced in murine whole blood or in a mouse intraperitoneal infection, indicating a human-specific mechanism. While it is known that the PTS can affect activity of the Mga virulence regulator, further characterization of the mechanism by which sugars and its protein domains affect activity have not been studied. Transcriptional studies revealed that the core Mga regulon is activated more in a glucose-rich than a glucose-poor environment. This activation correlates with the differential phosphorylation of Mga at its PTS regulatory domains (PRDs). Using a 5448 mga mutant, transcriptome studies in THY or C media established that the Mga regulon reflects the media used. Interestingly, Mga regulates phage-encoded DNases in a low glucose environment. We also show that Mga activity is dependent on C-terminal amino acid interactions that aid in the formation of homodimers. Overall, the studies presented sought to define how external environmental cues, specifically carbohydrates, control complex regulatory networks used by GAS, contribute to pathogenesis, and aid in adaptation to various nutrient conditions encountered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Picocyanobacteria are important phytoplankton and primary producers in the ocean. Although extensive work has been conducted for picocyanobacteria (i.e. Synechococcus and Prochlorococcus) in coastal and oceanic waters, little is known about those found in estuaries like the Chesapeake Bay. Synechococcus CB0101, an estuarine isolate, is more tolerant to shifts in temperature, salinity, and metal toxicity than coastal and oceanic Synechococcus strains, WH7803 and WH7805. Further, CB0101 has a greater sensitivity to high light intensity, likely due to its adaptation to low light environments. A complete and annotated genome sequence of CB0101 was completed to explore its genetic capacity and to serve as a basis for further molecular analysis. Comparative genomics between CB0101, WH7803, and WH7805 show that CB0101 contains more genes involved in regulation, sensing, and stress response. At the transcript and protein level, CB0101 regulates its metabolic pathways, transport systems, and sensing mechanisms when nitrate and phosphate are limited. Zinc toxicity led to oxidative stress and a global down regulation of photosystems and the translation machinery. From the stress response studies seven chromosomal toxin-antitoxin (TA) genes, were identified in CB0101, which led to the discovery of TA genes in several marine Synechococcus strains. The activation of the relB2/relE1 TA system allows CB0101 to arrest its growth under stressful conditions, but the growth arrest is reversible, once the stressful environment dissipates. The genome of CB0101 contains a relatively large number of genomic island (GI) genes compared to known marine Synechococcus genomes. Interestingly, a massive shutdown (255 out of 343) of GI genes occurred after CB0101 was infected by a lytic phage. On the other hand, phage-encoded host-like proteins (hli, psbA, ThyX) were highly expressed upon phage infection. This research provides new evidence that estuarine Synechococcus like CB0101 have inherited unique genetic machinery, which allows them to be versatile in the estuarine environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fruit is one of the most complex and important structures produced by flowering plants, and understanding the development and maturation process of fruits in different angiosperm species with diverse fruit structures is of immense interest. In the work presented here, molecular genetics and genomic analysis are used to explore the processes that form the fruit in two species: The model organism Arabidopsis and the diploid strawberry Fragaria vesca. One important basic question concerns the molecular genetic basis of fruit patterning. A long-standing model of Arabidopsis fruit (the gynoecium) patterning holds that auxin produced at the apex diffuses downward, forming a gradient that provides apical-basal positional information to specify different tissue types along the gynoecium’s length. The proposed gradient, however, has never been observed and the model appears inconsistent with a number of observations. I present a new, alternative model, wherein auxin acts to establish the adaxial-abaxial domains of the carpel primordia, which then ensures proper development of the final gynoecium. A second project utilizes genomics to identify genes that regulate fruit color by analyzing the genome sequences of Fragaria vesca, a species of wild strawberry. Shared and distinct SNPs among three F. vesca accessions were identified, providing a foundation for locating candidate mutations underlying phenotypic variations among different F. vesca accessions. Through systematic analysis of relevant SNP variants, a candidate SNP in FveMYB10 was identified that may underlie the fruit color in the yellow-fruited accessions, which was subsequently confirmed by functional assays. Our lab has previously generated extensive RNA-sequencing data that depict genome-scale gene expression profiles in F. vesca fruit and flower tissues at different developmental stages. To enhance the accessibility of this dataset, the web-based eFP software was adapted for this dataset, allowing visualization of gene expression in any tissues by user-initiated queries. Together, this thesis work proposes a well-supported new model of fruit patterning in Arabidopsis and provides further resources for F. vesca, including genome-wide variant lists and the ability to visualize gene expression. This work will facilitate future work linking traits of economic importance to specific genes and gaining novel insights into fruit patterning and development.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

During ecological speciation, divergent natural selection drives evolution of ecological specialization and genetic differentiation of populations on alternate environments. Populations diverging onto the same alternate environments may be geographically widespread, so that divergence may occur at an array of locations simultaneously. Spatial variation in the process of divergence may produce a pattern of differences in divergence among locations called the Geographic Mosaic of Divergence. Diverging populations may vary in their degree of genetic differentiation and ecological specialization among locations. My dissertation examines the pattern and evolutionary processes of divergence in pea aphids (Acyrthosiphon pisum) on alfalfa (Medicago sativa) and clover (Trifolium pretense). In Chapter One, I examined differences among North American aphid populations in genetic differentiation at nuclear, sequence-based markers and in ecological specialization, measured as aphid fecundity on each host plant. In the East, aphids showed high host-plant associated ecological specialization and high genetic differentiation. In the West, aphids from clover were genetically indistinguishable from aphids on alfalfa, and aphids from clover were less specialized. Thus, the pattern of divergence differed among locations, suggesting a Geographic Mosaic of Divergence. In Chapter Two, I examined genomic heterogeneity in divergence in aphids on alfalfa and clover across North America using amplified fragment length polymorphisms (AFLPs). The degree of genetic differentiation varied greatly among markers, suggesting that divergent natural selection drives aphid divergence in all geographic locations. Three of the same genetic markers were identified as evolving under divergent selection in the eastern and western regions, and additional divergent markers were identified in the East. In Chapter Three, I investigated population structure of aphids in North America, France, and Sweden using AFLPs. Aphids on the same host plant were genetically similar across many parts of their range, so the evolution of host plant specialization does not appear to have occurred independently in every location. While aphids on alfalfa and clover were genetically differentiated in most locations, aphids from alfalfa and clover were genetically similar in both western North America and Sweden. High gene flow from alfalfa onto clover may constrain divergence in these locations.