6 resultados para Modeling Development
em DRUM (Digital Repository at the University of Maryland)
Resumo:
The Mongolian gazelle, Procapra gutturosa, resides in the immense and dynamic ecosystem of the Eastern Mongolian Steppe. The Mongolian Steppe ecosystem dynamics, including vegetation availability, change rapidly and dramatically due to unpredictable precipitation patterns. The Mongolian gazelle has adapted to this unpredictable vegetation availability by making long range nomadic movements. However, predicting these movements is challenging and requires a complex model. An accurate model of gazelle movements is needed, as rampant habitat fragmentation due to human development projects - which inhibit gazelles from obtaining essential resources - increasingly threaten this nomadic species. We created a novel model using an Individual-based Neural Network Genetic Algorithm (ING) to predict how habitat fragmentation affects animal movement, using the Mongolian Steppe as a model ecosystem. We used Global Positioning System (GPS) collar data from real gazelles to “train” our model to emulate characteristic patterns of Mongolian gazelle movement behavior. These patterns are: preferred vegetation resources (NDVI), displacement over certain time lags, and proximity to human areas. With this trained model, we then explored how potential scenarios of habitat fragmentation may affect gazelle movement. This model can be used to predict how fragmentation of the Mongolian Steppe may affect the Mongolian gazelle. In addition, this model is novel in that it can be applied to other ecological scenarios, since we designed it in modules that are easily interchanged.
Resumo:
In support of the achievement goal theory (AGT), empirical research has demonstrated psychosocial benefits of the mastery-oriented learning climate. In this study, we examined the effects of perceived coaching behaviors on various indicators of psychosocial well-being (competitive anxiety, self-esteem, perceived competence, enjoyment, and future intentions for participation), as mediated by perceptions of the coach-initiated motivational climate, achievement goal orientations and perceptions of sport-specific skills efficacy. Using a pre-post test design, 1,464 boys, ages 10-15 (M = 12.84 years, SD = 1.44), who participated in a series of 12 football skills clinics were surveyed from various locations across the United States. Using structural equation modeling (SEM) path analysis and hierarchical regression analysis, the cumulative direct and indirect effects of the perceived coaching behaviors on the psychosocial variables at post-test were parsed out to determine what types of coaching behaviors are more conducive to the positive psychosocial development of youth athletes. The study demonstrated that how coaching behaviors are perceived impacts the athletes’ perceptions of the motivational climate and achievement goal orientations, as well as self-efficacy beliefs. These effects in turn affect the athletes’ self-esteem, general competence, sport-specific competence, competitive anxiety, enjoyment, and intentions to remain involved in the sport. The findings also clarify how young boys internalize and interpret coaches’ messages through modification of achievement goal orientations and sport-specific efficacy beliefs.
Resumo:
Deficits in social communication and interaction have been identified as distinguishing impairments for individuals with an autism spectrum disorder (ASD). As a pivotal skill, the successful development of social communication and interaction in individuals with ASD is a lifelong objective. Point-of-view video modeling has the potential to address these deficits. This type of video involves filming the completion of a targeted skill or behavior from a first-person perspective. By presenting only what a person might see from his or her viewpoint, it has been identified to be more effective in limiting irrelevant stimuli by providing a clear frame of reference to facilitate imitation. The current study investigated the use of point-of-view video modeling in teaching social initiations (e.g., greetings). Using a multiple baseline across participants design, five kindergarten participants were taught social initiations using point-of-view video modeling and video priming. Immediately before and after viewing the entire point-of-view video model, the participants were evaluated on their social initiations with a trained, typically developing peer serving as a communication partner. Specifically, the social initiations involved participants’ abilities to shift their attention toward the peer who entered the classroom, maintain attention toward the peer, and engage in an appropriate social initiation (e.g., hi, hello). Both generalization and maintenance were tested. Overall, the data suggest point-of-view video modeling is an effective intervention for increasing social initiations in young students with ASD. However, retraining was necessary for acquisition of skills in the classroom environment. Generalization in novel environments and with a novel communication partner, and generalization to other social initiation skills was limited. Additionally, maintenance of gained social initiation skills only occurred in the intervention room. Despite the limitations of the study and variable results, there are a number of implications moving forward for both practitioners and future researchers examining point-of-view modeling and its potential impact on the social initiation skills of individuals with ASD.
Resumo:
This dissertation presents work done in the design, modeling, and fabrication of magnetically actuated microrobot legs. Novel fabrication processes for manufacturing multi-material compliant mechanisms have been used to fabricate effective legged robots at both the meso and micro scales, where the meso scale refers to the transition between macro and micro scales. This work discusses the development of a novel mesoscale manufacturing process, Laser Cut Elastomer Refill (LaCER), for prototyping millimeter-scale multi-material compliant mechanisms with elastomer hinges. Additionally discussed is an extension of previous work on the development of a microscale manufacturing process for fabricating micrometer-sale multi-material compliant mechanisms with elastomer hinges, with the added contribution of a method for incorporating magnetic materials for mechanism actuation using externally applied fields. As both of the fabrication processes outlined make significant use of highly compliant elastomer hinges, a fast, accurate modeling method for these hinges was desired for mechanism characterization and design. An analytical model was developed for this purpose, making use of the pseudo rigid-body (PRB) model and extending its utility to hinges with significant stretch component, such as those fabricated from elastomer materials. This model includes 3 springs with stiffnesses relating to material stiffness and hinge geometry, with additional correction factors for aspects particular to common multi-material hinge geometry. This model has been verified against a finite element analysis model (FEA), which in turn was matched to experimental data on mesoscale hinges manufactured using LaCER. These modeling methods have additionally been verified against experimental data from microscale hinges manufactured using the Si/elastomer/magnetics MEMS process. The development of several mechanisms is also discussed: including a mesoscale LaCER-fabricated hexapedal millirobot capable of walking at 2.4 body lengths per second; prototyped mesoscale LaCER-fabricated underactuated legs with asymmetrical features for improved performance; 1 centimeter cubed LaCER-fabricated magnetically-actuated hexapods which use the best-performing underactuated leg design to locomote at up to 10.6 body lengths per second; five microfabricated magnetically actuated single-hinge mechanisms; a 14-hinge, 11-link microfabricated gripper mechanism; a microfabricated robot leg mechansim demonstrated clearing a step height of 100 micrometers; and a 4 mm x 4 mm x 5 mm, 25 mg microfabricated magnetically-actuated hexapod, demonstrated walking at up to 2.25 body lengths per second.
Resumo:
A primary goal of this dissertation is to understand the links between mathematical models that describe crystal surfaces at three fundamental length scales: The scale of individual atoms, the scale of collections of atoms forming crystal defects, and macroscopic scale. Characterizing connections between different classes of models is a critical task for gaining insight into the physics they describe, a long-standing objective in applied analysis, and also highly relevant in engineering applications. The key concept I use in each problem addressed in this thesis is coarse graining, which is a strategy for connecting fine representations or models with coarser representations. Often this idea is invoked to reduce a large discrete system to an appropriate continuum description, e.g. individual particles are represented by a continuous density. While there is no general theory of coarse graining, one closely related mathematical approach is asymptotic analysis, i.e. the description of limiting behavior as some parameter becomes very large or very small. In the case of crystalline solids, it is natural to consider cases where the number of particles is large or where the lattice spacing is small. Limits such as these often make explicit the nature of links between models capturing different scales, and, once established, provide a means of improving our understanding, or the models themselves. Finding appropriate variables whose limits illustrate the important connections between models is no easy task, however. This is one area where computer simulation is extremely helpful, as it allows us to see the results of complex dynamics and gather clues regarding the roles of different physical quantities. On the other hand, connections between models enable the development of novel multiscale computational schemes, so understanding can assist computation and vice versa. Some of these ideas are demonstrated in this thesis. The important outcomes of this thesis include: (1) a systematic derivation of the step-flow model of Burton, Cabrera, and Frank, with corrections, from an atomistic solid-on-solid-type models in 1+1 dimensions; (2) the inclusion of an atomistically motivated transport mechanism in an island dynamics model allowing for a more detailed account of mound evolution; and (3) the development of a hybrid discrete-continuum scheme for simulating the relaxation of a faceted crystal mound. Central to all of these modeling and simulation efforts is the presence of steps composed of individual layers of atoms on vicinal crystal surfaces. Consequently, a recurring theme in this research is the observation that mesoscale defects play a crucial role in crystal morphological evolution.
Resumo:
Rainflow counting methods convert a complex load time history into a set of load reversals for use in fatigue damage modeling. Rainflow counting methods were originally developed to assess fatigue damage associated with mechanical cycling where creep of the material under load was not considered to be a significant contributor to failure. However, creep is a significant factor in some cyclic loading cases such as solder interconnects under temperature cycling. In this case, fatigue life models require the dwell time to account for stress relaxation and creep. This study develops a new version of the multi-parameter rainflow counting algorithm that provides a range-based dwell time estimation for use with time-dependent fatigue damage models. To show the applicability, the method is used to calculate the life of solder joints under a complex thermal cycling regime and is verified by experimental testing. An additional algorithm is developed in this study to provide data reduction in the results of the rainflow counting. This algorithm uses a damage model and a statistical test to determine which of the resultant cycles are statistically insignificant to a given confidence level. This makes the resulting data file to be smaller, and for a simplified load history to be reconstructed.