3 resultados para Model parameters
em DRUM (Digital Repository at the University of Maryland)
Resumo:
The predictive capabilities of computational fire models have improved in recent years such that models have become an integral part of many research efforts. Models improve the understanding of the fire risk of materials and may decrease the number of expensive experiments required to assess the fire hazard of a specific material or designed space. A critical component of a predictive fire model is the pyrolysis sub-model that provides a mathematical representation of the rate of gaseous fuel production from condensed phase fuels given a heat flux incident to the material surface. The modern, comprehensive pyrolysis sub-models that are common today require the definition of many model parameters to accurately represent the physical description of materials that are ubiquitous in the built environment. Coupled with the increase in the number of parameters required to accurately represent the pyrolysis of materials is the increasing prevalence in the built environment of engineered composite materials that have never been measured or modeled. The motivation behind this project is to develop a systematic, generalized methodology to determine the requisite parameters to generate pyrolysis models with predictive capabilities for layered composite materials that are common in industrial and commercial applications. This methodology has been applied to four common composites in this work that exhibit a range of material structures and component materials. The methodology utilizes a multi-scale experimental approach in which each test is designed to isolate and determine a specific subset of the parameters required to define a material in the model. Data collected in simultaneous thermogravimetry and differential scanning calorimetry experiments were analyzed to determine the reaction kinetics, thermodynamic properties, and energetics of decomposition for each component of the composite. Data collected in microscale combustion calorimetry experiments were analyzed to determine the heats of complete combustion of the volatiles produced in each reaction. Inverse analyses were conducted on sample temperature data collected in bench-scale tests to determine the thermal transport parameters of each component through degradation. Simulations of quasi-one-dimensional bench-scale gasification tests generated from the resultant models using the ThermaKin modeling environment were compared to experimental data to independently validate the models.
Resumo:
The Mid-oceanic ridge system is a feature unique to Earth. It is one of the fundamental components of plate tectonics and reflects interior processes of mantle convection within the Earth. The thermal structure beneath the mid-ocean ridges has been the subject of several modeling studies. It is expected that the elastic thickness of the lithosphere is larger near the transform faults that bound mid-ocean ridge segments. Oceanic core complexes (OCCs), which are generally thought to result from long-lived fault slip and elastic flexure, have a shape that is sensitive to elastic thickness. By modeling the shape of OCCs emplaced along a ridge segment, it is possible to constraint elastic thickness and therefore the thermal structure of the plate and how it varies along-axis. This thesis builds upon previous studies that utilize thin plate flexure to reproduce the shape of OCCs. I compare OCC shape to a suite of models in which elastic thickness, fault dip, fault heave, crustal thickness, and axial infill are systematically varied. Using a grid search, I constrain the parameters that best reproduce the bathymetry and/or the slope of ten candidate OCCs identified along the 12°—15°N segment of the Mid-Atlantic Ridge. The lithospheric elastic thicknesses that explains these OCCs is thinner than previous investigators suggested and the fault planes dip more shallowly in the subsurface, although at an angle compatible with Anderson’s theory of faulting. No relationships between model parameters and an oceanic core complexes location within a segment are identified with the exception that the OCCs located less than 20km from a transform fault have slightly larger elastic thickness than OCCs in the middle of the ridge segment.
Resumo:
Nonpoint sources (NPS) pollution from agriculture is the leading source of water quality impairment in U.S. rivers and streams, and a major contributor to lakes, wetlands, estuaries and coastal waters (U.S. EPA 2016). Using data from a survey of farmers in Maryland, this dissertation examines the effects of a cost sharing policy designed to encourage adoption of conservation practices that reduce NPS pollution in the Chesapeake Bay watershed. This watershed is the site of the largest Total Maximum Daily Load (TMDL) implemented to date, making it an important setting in the U.S. for water quality policy. I study two main questions related to the reduction of NPS pollution from agriculture. First, I examine the issue of additionality of cost sharing payments by estimating the direct effect of cover crop cost sharing on the acres of cover crops, and the indirect effect of cover crop cost sharing on the acres of two other practices: conservation tillage and contour/strip cropping. A two-stage simultaneous equation approach is used to correct for voluntary self-selection into cost sharing programs and account for substitution effects among conservation practices. Quasi-random Halton sequences are employed to solve the system of equations for conservation practice acreage and to minimize the computational burden involved. By considering patterns of agronomic complementarity or substitution among conservation practices (Blum et al., 1997; USDA SARE, 2012), this analysis estimates water quality impacts of the crowding-in or crowding-out of private investment in conservation due to public incentive payments. Second, I connect the econometric behavioral results with model parameters from the EPA’s Chesapeake Bay Program to conduct a policy simulation on water quality effects. I expand the econometric model to also consider the potential loss of vegetative cover due to cropland incentive payments, or slippage (Lichtenberg and Smith-Ramirez, 2011). Econometric results are linked with the Chesapeake Bay Program watershed model to estimate the change in abatement levels and costs for nitrogen, phosphorus and sediment under various behavioral scenarios. Finally, I use inverse sampling weights to derive statewide abatement quantities and costs for each of these pollutants, comparing these with TMDL targets for agriculture in Maryland.