2 resultados para Model Output Statistics

em DRUM (Digital Repository at the University of Maryland)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Graphs are powerful tools to describe social, technological and biological networks, with nodes representing agents (people, websites, gene, etc.) and edges (or links) representing relations (or interactions) between agents. Examples of real-world networks include social networks, the World Wide Web, collaboration networks, protein networks, etc. Researchers often model these networks as random graphs. In this dissertation, we study a recently introduced social network model, named the Multiplicative Attribute Graph model (MAG), which takes into account the randomness of nodal attributes in the process of link formation (i.e., the probability of a link existing between two nodes depends on their attributes). Kim and Lesckovec, who defined the model, have claimed that this model exhibit some of the properties a real world social network is expected to have. Focusing on a homogeneous version of this model, we investigate the existence of zero-one laws for graph properties, e.g., the absence of isolated nodes, graph connectivity and the emergence of triangles. We obtain conditions on the parameters of the model, so that these properties occur with high or vanishingly probability as the number of nodes becomes unboundedly large. In that regime, we also investigate the property of triadic closure and the nodal degree distribution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As usage metrics continue to attain an increasingly central role in library system assessment and analysis, librarians tasked with system selection, implementation, and support are driven to identify metric approaches that simultaneously require less technical complexity and greater levels of data granularity. Such approaches allow systems librarians to present evidence-based claims of platform usage behaviors while reducing the resources necessary to collect such information, thereby representing a novel approach to real-time user analysis as well as dual benefit in active and preventative cost reduction. As part of the DSpace implementation for the MD SOAR initiative, the Consortial Library Application Support (CLAS) division has begun test implementation of the Google Tag Manager analytic system in an attempt to collect custom analytical dimensions to track author- and university-specific download behaviors. Building on the work of Conrad , CLAS seeks to demonstrate that the GTM approach to custom analytics provides both granular metadata-based usage statistics in an approach that will prove extensible for additional statistical gathering in the future. This poster will discuss the methodology used to develop these custom tag approaches, the benefits of using the GTM model, and the risks and benefits associated with further implementation.