4 resultados para Mobile and ubiquitous computing
em DRUM (Digital Repository at the University of Maryland)
Resumo:
A primary goal of context-aware systems is delivering the right information at the right place and right time to users in order to enable them to make effective decisions and improve their quality of life. There are three key requirements for achieving this goal: determining what information is relevant, personalizing it based on the users’ context (location, preferences, behavioral history etc.), and delivering it to them in a timely manner without an explicit request from them. These requirements create a paradigm that we term as “Proactive Context-aware Computing”. Most of the existing context-aware systems fulfill only a subset of these requirements. Many of these systems focus only on personalization of the requested information based on users’ current context. Moreover, they are often designed for specific domains. In addition, most of the existing systems are reactive - the users request for some information and the system delivers it to them. These systems are not proactive i.e. they cannot anticipate users’ intent and behavior and act proactively without an explicit request from them. In order to overcome these limitations, we need to conduct a deeper analysis and enhance our understanding of context-aware systems that are generic, universal, proactive and applicable to a wide variety of domains. To support this dissertation, we explore several directions. Clearly the most significant sources of information about users today are smartphones. A large amount of users’ context can be acquired through them and they can be used as an effective means to deliver information to users. In addition, social media such as Facebook, Flickr and Foursquare provide a rich and powerful platform to mine users’ interests, preferences and behavioral history. We employ the ubiquity of smartphones and the wealth of information available from social media to address the challenge of building proactive context-aware systems. We have implemented and evaluated a few approaches, including some as part of the Rover framework, to achieve the paradigm of Proactive Context-aware Computing. Rover is a context-aware research platform which has been evolving for the last 6 years. Since location is one of the most important context for users, we have developed ‘Locus’, an indoor localization, tracking and navigation system for multi-story buildings. Other important dimensions of users’ context include the activities that they are engaged in. To this end, we have developed ‘SenseMe’, a system that leverages the smartphone and its multiple sensors in order to perform multidimensional context and activity recognition for users. As part of the ‘SenseMe’ project, we also conducted an exploratory study of privacy, trust, risks and other concerns of users with smart phone based personal sensing systems and applications. To determine what information would be relevant to users’ situations, we have developed ‘TellMe’ - a system that employs a new, flexible and scalable approach based on Natural Language Processing techniques to perform bootstrapped discovery and ranking of relevant information in context-aware systems. In order to personalize the relevant information, we have also developed an algorithm and system for mining a broad range of users’ preferences from their social network profiles and activities. For recommending new information to the users based on their past behavior and context history (such as visited locations, activities and time), we have developed a recommender system and approach for performing multi-dimensional collaborative recommendations using tensor factorization. For timely delivery of personalized and relevant information, it is essential to anticipate and predict users’ behavior. To this end, we have developed a unified infrastructure, within the Rover framework, and implemented several novel approaches and algorithms that employ various contextual features and state of the art machine learning techniques for building diverse behavioral models of users. Examples of generated models include classifying users’ semantic places and mobility states, predicting their availability for accepting calls on smartphones and inferring their device charging behavior. Finally, to enable proactivity in context-aware systems, we have also developed a planning framework based on HTN planning. Together, these works provide a major push in the direction of proactive context-aware computing.
Resumo:
The size of online image datasets is constantly increasing. Considering an image dataset with millions of images, image retrieval becomes a seemingly intractable problem for exhaustive similarity search algorithms. Hashing methods, which encodes high-dimensional descriptors into compact binary strings, have become very popular because of their high efficiency in search and storage capacity. In the first part, we propose a multimodal retrieval method based on latent feature models. The procedure consists of a nonparametric Bayesian framework for learning underlying semantically meaningful abstract features in a multimodal dataset, a probabilistic retrieval model that allows cross-modal queries and an extension model for relevance feedback. In the second part, we focus on supervised hashing with kernels. We describe a flexible hashing procedure that treats binary codes and pairwise semantic similarity as latent and observed variables, respectively, in a probabilistic model based on Gaussian processes for binary classification. We present a scalable inference algorithm with the sparse pseudo-input Gaussian process (SPGP) model and distributed computing. In the last part, we define an incremental hashing strategy for dynamic databases where new images are added to the databases frequently. The method is based on a two-stage classification framework using binary and multi-class SVMs. The proposed method also enforces balance in binary codes by an imbalance penalty to obtain higher quality binary codes. We learn hash functions by an efficient algorithm where the NP-hard problem of finding optimal binary codes is solved via cyclic coordinate descent and SVMs are trained in a parallelized incremental manner. For modifications like adding images from an unseen class, we propose an incremental procedure for effective and efficient updates to the previous hash functions. Experiments on three large-scale image datasets demonstrate that the incremental strategy is capable of efficiently updating hash functions to the same retrieval performance as hashing from scratch.
Resumo:
Cells adapt to their changing world by sensing environmental cues and responding appropriately. This is made possible by complex cascades of biochemical signals that originate at the cell membrane. In the last decade it has become apparent that the origin of these signals can also arise from physical cues in the environment. Our motivation is to investigate the role of physical factors in the cellular response of the B lymphocyte. B cells patrol the body for signs of invading pathogens in the form of antigen on the surface of antigen presenting cells. Binding of antigen with surface proteins initiates biochemical signaling essential to the immune response. Once contact is made, the B cell spreads on the surface of the antigen presenting cell in order to gather as much antigen as possible. The physical mechanisms that govern this process are unexplored. In this research, we examine the role of the physical parameters of antigen mobility and cell surface topography on B cell spreading and activation. Both physical parameters are biologically relevant as immunogens for vaccine design, which can provide laterally mobile and immobile antigens and topographical surfaces. Another physical parameter that influences B cell response and the formation of the cell-cell junction is surface topography. This is biologically relevant as antigen presenting cells have highly convoluted membranes, resulting in variable topography. We found that B cell activation required the formation of antigen-receptor clusters and their translocation within the attachment plane. We showed that cells which failed to achieve these mobile clusters due to prohibited ligand mobility were much less activation competent. To investigate the effect of topography, we use nano- and micro-patterned substrates, on which B cells were allowed to spread and become activated. We found that B cell spreading, actin dynamics, B cell receptor distribution and calcium signaling are dependent on the topographical patterning of the substrate. A quantitative understanding of cellular response to physical parameters is essential to uncover the fundamental mechanisms that drive B cell activation. The results of this research are highly applicable to the field of vaccine development and therapies for autoimmune diseases. Our studies of the physical aspects of lymphocyte activation will reveal the role these factors play in immunity, thus enabling their optimization for biological function and potentially enabling the production of more effective vaccines.
Resumo:
Bikeshares promote healthy lifestyles and sustainability among commuters, casual riders, and tourists. However, the central pillar of modern systems, the bike station, cannot be easily integrated into a compact college campus. Fixed stations lack the flexibility to meet the needs of college students who make quick, short-distance trips. Additionally, the necessary cost of implementing and maintaining each station prohibits increasing the number of stations for user convenience. Therefore, the team developed a stationless bikeshare based on a smartlock permanently attached to bicycles in the system. The smartlock system design incorporates several innovative approaches to provide usability, security, and reliability that overcome the limitations of a station centered design. A focus group discussion allowed the team to receive feedback on the early lock, system, and website designs, identify improvements and craft a pleasant user experience. The team designed a unique, two-step lock system that is intuitive to operate while mitigating user error. To ensure security, user access is limited through near field ii communications (NFC) technology connected to a mechatronic release system. The said system relied on a NFC module and a servo working through an Arduino microcontroller coded in the Arduino IDE. To track rentals and maintain the system, each bike is fitted with an XBee module to communicate with a scalable ZigBee mesh network. The network allows for bidirectional, real-time communication with a Meteor.js web application, which enables user and administrator functions through an intuitive user interface available on mobile and desktop. The development of an independent smartlock to replace bike stations is essential to meet the needs of the modern college student. With the goal of creating a bikeshare that better serves college students, Team BIKES has laid the framework for a system that is affordable, easily adaptable, and implementable on any university expressing an interest in bringing a bikeshare to its campus.