3 resultados para Missed appointments
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Malware is a foundational component of cyber crime that enables an attacker to modify the normal operation of a computer or access sensitive, digital information. Despite the extensive research performed to identify such programs, existing schemes fail to detect evasive malware, an increasingly popular class of malware that can alter its behavior at run-time, making it difficult to detect using today’s state of the art malware analysis systems. In this thesis, we present DVasion, a comprehensive strategy that exposes such evasive behavior through a multi-execution technique. DVasion successfully detects behavior that would have been missed by traditional, single-execution approaches, while addressing the limitations of previously proposed multi-execution systems. We demonstrate the accuracy of our system through strong parallels with existing work on evasive malware, as well as uncover the hidden behavior within 167 of 1,000 samples.
Resumo:
The universities rely on the Information Technology (IT) projects to support and enhance their core strategic objectives of teaching, research, and administration. The researcher’s literature review found that the level of IT funding and resources in the universities is not adequate to meet the IT demands. The universities received more IT project requests than they could execute. As such, universities must selectively fund the IT projects. The objectives of the IT projects in the universities vary. An IT project which benefits the teaching functions may not benefit the administrative functions. As such, the selection of an IT project is challenging in the universities. To aid with the IT decision making, many universities in the United States of America (USA) have formed the IT Governance (ITG) processes. ITG is an IT decision making and accountability framework whose purpose is to align the IT efforts in an organization with its strategic objectives, realize the value of the IT investments, meet the expected performance criteria, and manage the risks and the resources (Weil & Ross, 2004). ITG in the universities is relatively new, and it is not well known how the ITG processes are aiding the nonprofit universities in selecting the right IT projects, and managing the performance of these IT projects. This research adds to the body of knowledge regarding the IT project selection under the governance structure, the maturity of the IT projects, and the IT project performance in the nonprofit universities. The case study research methodology was chosen for this exploratory research. The convenience sampling was done to choose the cases from two large, research universities with decentralized colleges, and two small, centralized universities. The data were collected on nine IT projects from these four universities using the interviews and the university documents. The multi-case analysis was complemented by the Qualitative Comparative Analysis (QCA) to systematically analyze how the IT conditions lead to an outcome. This research found that the IT projects were selected in the centralized universities in a more informed manner. ITG was more authoritative in the small centralized universities; the ITG committees were formed by including the key decision makers, the decision-making roles, and responsibilities were better defined, and the frequency of ITG communication was higher. In the centralized universities, the business units and colleges brought the IT requests to ITG committees; which in turn prioritized the IT requests and allocated the funds and the resources to the IT projects. ITG committee members in the centralized universities had a higher awareness of the university-wide IT needs, and the IT projects tended to align with the strategic objectives. On the other hand, the decentralized colleges and business units in the large universities were influential and often bypassed the ITG processes. The decentralized units often chose the “pet” IT projects, and executed them within a silo, without bringing them to the attention of the ITG committees. While these IT projects met the departmental objectives, they did not always align with the university’s strategic objectives. This research found that the IT project maturity in the university could be increased by following the project management methodologies. The IT project management maturity was found higher in the IT projects executed by the centralized university, where a full-time project manager was assigned to manage the project, and the project manager had a higher expertise in the project management. The IT project executed under the guidance of the Project Management Office (PMO) has exhibited a higher project management maturity, as the PMO set the standards and controls for the project. The IT projects managed by the decentralized colleges by a part-time project manager with lower project management expertise have exhibited a lower project management maturity. The IT projects in the decentralized colleges were often managed by the business, or technical leads, who often lacked the project management expertise. This research found that higher the IT project management maturity, the better is the project performance. The IT projects with a higher maturity had a lower project delay, lower number of missed requirements, and lower number of IT system errors. This research found that the quality of IT decision in the university could be improved by centralizing the IT decision-making processes. The IT project management maturity could be improved by following the project management methodologies. The stakeholder management and communication were found critical for the success of the IT projects in the university. It is hoped that the findings from this research would help the university leaders make the strategic IT decisions, and the university’s IT project managers make the IT project decisions.
Resumo:
Mental stress is known to disrupt the execution of motor performance and can lead to decrements in the quality of performance, however, individuals have shown significant differences regarding how fast and well they can perform a skilled task according to how well they can manage stress and emotion. The purpose of this study was to advance our understanding of how the brain modulates emotional reactivity under different motivational states to achieve differential performance in a target shooting task that requires precision visuomotor coordination. In order to study the interactions in emotion regulatory brain areas (i.e. the ventral striatum, amygdala, prefrontal cortex) and the autonomic nervous system, reward and punishment interventions were employed and the resulting behavioral and physiological responses contrasted to observe the changes in shooting performance (i.e. shooting accuracy and stability of aim) and neuro-cognitive processes (i.e. cognitive load and reserve) during the shooting task. Thirty-five participants, aged 18 to 38 years, from the Reserve Officers’ Training Corp (ROTC) at the University of Maryland were recruited to take 30 shots at a bullseye target in three different experimental conditions. In the reward condition, $1 was added to their total balance for every 10-point shot. In the punishment condition, $1 was deducted from their total balance if they did not hit the 10-point area. In the neutral condition, no money was added or deducted from their total balance. When in the reward condition, which was reportedly most enjoyable and least stressful of the conditions, heart rate variability was found to be positively related to shooting scores, inversely related to variability in shooting performance and positively related to alpha power (i.e. less activation) in the left temporal region. In the punishment (and most stressful) condition, an increase in sympathetic response (i.e. increased LF/HF ratio) was positively related to jerking movements as well as variability of placement (on the target) in the shots taken. This, coupled with error monitoring activity in the anterior cingulate cortex, suggests evaluation of self-efficacy might be driving arousal regulation, thus affecting shooting performance. Better performers showed variable, increasing high-alpha power in the temporal region during the aiming period towards taking the shot which could indicate an adaptive strategy of engagement. They also showed lower coherence during hit shots than missed shots which was coupled with reduced jerking movements and better precision and accuracy. Frontal asymmetry measures revealed possible influence of the prefrontal lobe in driving this effect in reward and neutral conditions. The possible interactions, reasons behind these findings and implications are discussed.