3 resultados para Macro scale distributions

em DRUM (Digital Repository at the University of Maryland)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Biofilms are the primary cause of clinical bacterial infections and are impervious to typical amounts of antibiotics, necessitating very high doses for treatment. Therefore, it is highly desirable to develop new alternate methods of treatment that can complement or replace existing approaches using significantly lower doses of antibiotics. Current standards for studying biofilms are based on end-point studies that are invasive and destroy the biofilm during characterization. This dissertation presents the development of a novel real-time sensing and treatment technology to aid in the non-invasive characterization, monitoring and treatment of bacterial biofilms. The technology is demonstrated through the use of a high-throughput bifurcation based microfluidic reactor that enables simulation of flow conditions similar to indwelling medical devices. The integrated microsystem developed in this work incorporates the advantages of previous in vitro platforms while attempting to overcome some of their limitations. Biofilm formation is extremely sensitive to various growth parameters that cause large variability in biofilms between repeated experiments. In this work we investigate the use of microfluidic bifurcations for the reduction in biofilm growth variance. The microfluidic flow cell designed here spatially sections a single biofilm into multiple channels using microfluidic flow bifurcation. Biofilms grown in the bifurcated device were evaluated and verified for reduced biofilm growth variance using standard techniques like confocal microscopy. This uniformity in biofilm growth allows for reliable comparison and evaluation of new treatments with integrated controls on a single device. Biofilm partitioning was demonstrated using the bifurcation device by exposing three of the four channels to various treatments. We studied a novel bacterial biofilm treatment independent of traditional antibiotics using only small molecule inhibitors of bacterial quorum sensing (analogs) in combination with low electric fields. Studies using the bifurcation-based microfluidic flow cell integrated with real-time transduction methods and macro-scale end-point testing of the combination treatment showed a significant decrease in biomass compared to the untreated controls and well-known treatments such as antibiotics. To understand the possible mechanism of action of electric field-based treatments, fundamental treatment efficacy studies focusing on the effect of the energy of the applied electrical signal were performed. It was shown that the total energy and not the type of the applied electrical signal affects the effectiveness of the treatment. The linear dependence of the treatment efficacy on the applied electrical energy was also demonstrated. The integrated bifurcation-based microfluidic platform is the first microsystem that enables biofilm growth with reduced variance, as well as continuous real-time threshold-activated feedback monitoring and treatment using low electric fields. The sensors detect biofilm growth by monitoring the change in impedance across the interdigitated electrodes. Using the measured impedance change and user inputs provided through a convenient and simple graphical interface, a custom-built MATLAB control module intelligently switches the system into and out of treatment mode. Using this self-governing microsystem, in situ biofilm treatment based on the principles of the bioelectric effect was demonstrated by exposing two of the channels of the integrated bifurcation device to low doses of antibiotics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Compaction control using lightweight deflectometers (LWD) is currently being evaluated in several states and countries and fully implemented for pavement construction quality assurance (QA) by a few. Broader implementation has been hampered by the lack of a widely recognized standard for interpreting the load and deflection data obtained during construction QA testing. More specifically, reliable and practical procedures are required for relating these measurements to the fundamental material property—modulus—used in pavement design. This study presents a unique set of data and analyses for three different LWDs on a large-scale controlled-condition experiment. Three 4.5x4.5 m2 test pits were designed and constructed at target moisture and density conditions simulating acceptable and unacceptable construction quality. LWD testing was performed on the constructed layers along with static plate loading testing, conventional nuclear gauge moisture-density testing, and non-nuclear gravimetric and volumetric water content measurements. Additional material was collected for routine and exploratory tests in the laboratory. These included grain size distributions, soil classification, moisture-density relations, resilient modulus testing at optimum and field conditions, and an advanced experiment of LWD testing on top of the Proctor compaction mold. This unique large-scale controlled-condition experiment provides an excellent high quality resource of data that can be used by future researchers to find a rigorous, theoretically sound, and straightforward technique for standardizing LWD determination of modulus and construction QA for unbound pavement materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding how biodiversity spatially distribute over both the short term and long term, and what factors are affecting the distribution, are critical for modeling the spatial pattern of biodiversity as well as for promoting effective conservation planning and practices. This dissertation aims to examine factors that influence short-term and long-term avian distribution from the geographical sciences perspective. The research develops landscape level habitat metrics to characterize forest height heterogeneity and examines their efficacies in modelling avian richness at the continental scale. Two types of novel vegetation-height-structured habitat metrics are created based on second order texture algorithms and the concepts of patch-based habitat metrics. I correlate the height-structured metrics with the richness of different forest guilds, and also examine their efficacies in multivariate richness models. The results suggest that height heterogeneity, beyond canopy height alone, supplements habitat characterization and richness models of two forest bird guilds. The metrics and models derived in this study demonstrate practical examples of utilizing three-dimensional vegetation data for improved characterization of spatial patterns in species richness. The second and the third projects focus on analyzing centroids of avian distributions, and testing hypotheses regarding the direction and speed of these shifts. I first showcase the usefulness of centroids analysis for characterizing the distribution changes of a few case study species. Applying the centroid method on 57 permanent resident bird species, I show that multi-directional distribution shifts occurred in large number of studied species. I also demonstrate, plain birds are not shifting their distribution faster than mountain birds, contrary to the prediction based on climate change velocity hypothesis. By modelling the abundance change rate at regional level, I show that extreme climate events and precipitation measures associate closely with some of the long-term distribution shifts. This dissertation improves our understanding on bird habitat characterization for species richness modelling, and expands our knowledge on how avian populations shifted their ranges in North America responding to changing environments in the past four decades. The results provide an important scientific foundation for more accurate predictive species distribution modeling in future.