2 resultados para MONOMERS

em DRUM (Digital Repository at the University of Maryland)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poly(ethylene oxide) (PEO) is one of the most researched synthetic polymers due to the complex behavior which arises from the interplay of the hydrophilic and hydrophobic sites on the polymer chain. PEO in ethanol forms an opaque gel-like mixture with a partially crystalline structure. Addition of a small amount of water disrupts the gel: 5 wt % PEO in ethanol becomes a transparent solution with the addition of 4 vol % water. The phase behavior of PEO in mixed solvents have been studied using small-angle neutron scattering (SANS). PEO solutions (5 wt % PEO) which contain 4 vol % - 10 vol % (and higher) water behave as an athermal polymer solution and the phase behavior changes from UCST to LCST rapidly as the fraction of water is increased. 2 wt % PEO in water and 10 wt % PEO in ethanol/ water mixtures are examined to assess the role of hydration. The observed phase behavior is consistent with a hydration layer forming upon the addition of water as the system shifts from UCST to LCST behavior. At the molecular level, two or three water molecules can hydrate one PEO monomer (water molecules form a sheath around the PEO macromolecule) which is consistent with the suppression of crystallization and change in the mentioned phase behavior as observed by SANS. The clustering effect of aqueous PEO solution (M.W of PEO = 90,000 g/mol) is monitored as an excess scattering intensity at low-Q. Clustering intensity at Q = 0.004 Å^-1 is used for evaluating the clustering effect. The clustering intensity is proportional to the inverse temperature and levels off when the temperature is less than 50 ˚C. When the temperature is increased over 50 ˚C, the clustering intensity starts decreasing. The clustering of PEO is monitored in ethanol/ water mixtures. The clustering intensity increases as the fraction of water is increased. Based on the solvation intensity behavior, we confirmed that the ethanol/ water mixtures obey a random solvent mixing rule, whereby solvent mixtures are better at solvating the polymer that any of the two solvents. The solution behavior of PEO in ethanol was investigated in the presence of salt (CaCl2) using SANS. Binding of Ca2+ ions to the PEO oxygens transforms the neutral polymer to a weakly charged polyelectrolyte. We observed that the PEO/ethanol solution is better solvated at higher salt concentration due to the electrostatic repulsion of weakly charged monomers. The association of the Ca2+ ions with the PEO oxygen atoms transforms the neutral polymer to a weakly charged polyelectrolyte and gives rise to repulsive interactions between the PEO/Ca2+ complexes. Addition of salt disrupts the gel, which is consistent with better solvation as the salt concentration is increased. Moreover, SANS shows that the phase behavior of PEO/ethanol changes from UCST to LCST as the salt concentration is increased.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ubiquitylation or covalent attachment of ubiquitin (Ub) to a variety of substrate proteins in cells is a versatile post-translational modification involved in the regulation of numerous cellular processes. The distinct messages that polyubiquitylation encodes are attributed to the multitude of conformations possible through attachment of ubiquitin monomers within a polyubiquitin chain via a specific lysine residue. Thus the hypothesis is that linkage defines polyubiquitin conformation which in turn determines specific recognition by cellular receptors. Ubiquitylation of membrane surface receptor proteins plays a very important role in regulating receptor-mediated endocytosis as well as endosomal sorting for lysosomal degradation. Epsin1 is an endocytic adaptor protein with three tandem UIMs (Ubiquitin Interacting Motifs) which are responsible for the highly specific interaction between epsin and ubiquitylated receptors. Epsin1 is also an oncogenic protein and its expression is upregulated in some types of cancer. Recently it has been shown that novel K11 and K63 mixed-linkage polyubiquitin chains serve as internalization signal for MHC I (Major Histocompatibility Complex I) molecule through their association with the tUIMs of epsin1. However the molecular mode of action and structural details of the interaction between polyubiquitin chains on receptors and tUIMs of epsin1 is yet to be determined. This information is crucial for the development of anticancer therapeutics targeting epsin1. The molecular basis for the linkage-specific recognition of K11 and K63 mixed-linkage polyubiquitin chains by the tandem UIMs of the endocytic adaptor protein epsin1 is investigated using a combination of NMR methods.