3 resultados para METAL MATRIX COMPOSITES
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Multiscale reinforcement, using carbon microfibers and multi-walled carbon nanotubes, of polymer matrix composites manufactured by twin-screw extrusion is investigated for enhanced mechanical and thermal properties with an emphasis on the use of a diverging flow in the die for fluid mechanical fiber manipulation. Using fillers at different length scales (microscale and nanoscale), synergistic combinations have been identified to produce distinct mechanical and thermal behavior. Fiber manipulation has been demonstrated experimentally and computationally, and has been shown to enhance thermal conductivity significantly. Finally, a new physics driven predictive model for thermal conductivity has been developed based on fiber orientation during flow, which is shown to successfully capture composite thermal conductivity.
Resumo:
The aim of this dissertation was to investigate flexible polymer-nanoparticle composites with unique magnetic and electrical properties. Toward this goal, two distinct projects were carried out. The first project explored the magneto-dielectric properties and morphology of flexible polymer-nanoparticle composites that possess high permeability (µ), high permittivity (ε) and minimal dielectric, and magnetic loss (tan δε, tan δµ). The main materials challenges were the synthesis of magnetic nanoparticle fillers displaying high saturation magnetization (Ms), limited coercivity, and their homogeneous dispersion in a polymeric matrix. Nanostructured magnetic fillers including polycrystalline iron core-shell nanoparticles, and constructively assembled superparamagnetic iron oxide nanoparticles were synthesized, and dispersed uniformly in an elastomer matrix to minimize conductive losses. The resulting composites have demonstrated promising permittivity (22.3), permeability (3), and sustained low dielectric (0.1), magnetic (0.4) loss for frequencies below 2 GHz. This study demonstrated nanocomposites with tunable magnetic resonance frequency, which can be used to develop compact and flexible radio frequency devices with high efficiency. The second project focused on fundamental research regarding methods for the design of highly conductive polymer-nanoparticle composites that can maintain high electrical conductivity under tensile strain exceeding 100%. We investigated a simple solution spraying method to fabricate stretchable conductors based on elastomeric block copolymer fibers and silver nanoparticles. Silver nanoparticles were assembled both in and around block copolymer fibers forming interconnected dual nanoparticle networks, resulting in both in-fiber conductive pathways and additional conductive pathways on the outer surface of the fibers. Stretchable composites with conductivity values reaching 9000 S/cm maintained 56% of their initial conductivity after 500 cycles at 100% strain. The developed manufacturing method in this research could pave the way towards direct deposition of flexible electronic devices on any shaped substrate. The electrical and electromechanical properties of these dual silver nanoparticle network composites make them promising materials for the future construction of stretchable circuitry for displays, solar cells, antennas, and strain and tactility sensors.
Experimental Modeling of Twin-Screw Extrusion Processes to Predict Properties of Extruded Composites
Resumo:
Twin-screw extrusion is used to compound fillers into a polymer matrix in order to improve the properties of the final product. The resultant properties of the composite are determined by the operating conditions used during extrusion processing. Changes in the operating conditions affect the physics of the melt flow, inducing unique composite properties. In the following work, the Residence Stress Distribution methodology has been applied to model both the stress behavior and the property response of a twin-screw compounding process as a function of the operating conditions. The compounding of a pigment into a polymer melt has been investigated to determine the effect of stress on the degree of mixing, which will affect the properties of the composite. In addition, the pharmaceutical properties resulting from the compounding of an active pharmaceutical ingredient are modeled as a function of the operating conditions, indicating the physical behavior inducing the property responses.