2 resultados para Loading constraint
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Vascular phloem loading has long been recognized as an essential step in the establishment of a systemic virus infection. Yet little is known about this process and the mechanisms that control it. In this study, an interaction between the replication protein of Tobacco mosaic virus (TMV) and phloem specific auxin/indole acetic acid (Aux/IAA) transcriptional regulators was found to modulate virus phloem loading. Promoter expression studies show TMV 126/183 kDa interacting Aux/IAAs predominantly express and accumulate within the nuclei of phloem companion cells (CC). Furthermore, CC Aux/IAA nuclear localization is disrupted upon infection with an interacting virus but not during infection with a non-interacting virus. In situ analysis of virus spread shows the inability of TMV variants to disrupt Aux/IAA CC nuclear localization correlates with a reduced ability to load into the vascular tissue. Subsequent systemic movement assays also demonstrate that a virus capable of disrupting Aux/IAA localization is significantly more competitive at systemic movement than a non-interacting virus. Similarly, CC expression and over-accumulation of a degradation-resistant-interacting Aux/IAA protein was found to selectively inhibit TMV accumulation and phloem loading. Transcriptional expression studies demonstrate a role for interacting Aux/IAA proteins in the regulation of salicylic acid and jasmonic acid dependent host defense responses as well as virus specific movement factors including pectin methylesterase that are involved in regulating plasmodesmata size exclusion limits and promoting virus cell-to-cell movement. Further characterization of the phloem environment was done using two phloem specific promoters (pSUC2 and pSULTR2;2) to generate epitope-tagged polysomal-RNA complexes. Immuno-purification using the epitope tag allowed us to obtain mRNAs bound to polysomes (the translatome) specifically in phloem tissue. We found the phloem translatome is uniquely altered during TMV infection with 90% and 88% of genes down regulated in the pSUC2 and pSULTR2;2 phloem translatomes, compared to 31% of genes down regulated in the whole plant p35S translatome. Transcripts down regulated in phloem include genes involved in callose deposition at plasmodesmata, host defense responses, and RNA silencing. Combined, these findings indicate TMV reprograms gene expression within the vascular phloem as a means to enhance phloem loading and systemic spread.
Resumo:
Nonlinear thermo-mechanical properties of advanced polymers are crucial to accurate prediction of the process induced warpage and residual stress of electronics packages. The Fiber Bragg grating (FBG) sensor based method is advanced and implemented to determine temperature and time dependent nonlinear properties. The FBG sensor is embedded in the center of the cylindrical specimen, which deforms together with the specimen. The strains of the specimen at different loading conditions are monitored by the FBG sensor. Two main sources of the warpage are considered: curing induced warpage and coefficient of thermal expansion (CTE) mismatch induced warpage. The effective chemical shrinkage and the equilibrium modulus are needed for the curing induced warpage prediction. Considering various polymeric materials used in microelectronic packages, unique curing setups and procedures are developed for elastomers (extremely low modulus, medium viscosity, room temperature curing), underfill materials (medium modulus, low viscosity, high temperature curing), and epoxy molding compound (EMC: high modulus, high viscosity, high temperature pressure curing), most notably, (1) zero-constraint mold for elastomers; (2) a two-stage curing procedure for underfill materials and (3) an air-cylinder based novel setup for EMC. For the CTE mismatch induced warpage, the temperature dependent CTE and the comprehensive viscoelastic properties are measured. The cured cylindrical specimen with a FBG sensor embedded in the center is further used for viscoelastic property measurements. A uni-axial compressive loading is applied to the specimen to measure the time dependent Young’s modulus. The test is repeated from room temperature to the reflow temperature to capture the time-temperature dependent Young’s modulus. A separate high pressure system is developed for the bulk modulus measurement. The time temperature dependent bulk modulus is measured at the same temperatures as the Young’s modulus. The master curve of the Young’s modulus and bulk modulus of the EMC is created and a single set of the shift factors is determined from the time temperature superposition. The supplementary experiments are conducted to verify the validity of the assumptions associated with the linear viscoelasticity. The measured time-temperature dependent properties are further verified by a shadow moiré and Twyman/Green test.