1 resultado para Libyan Data Protection Authority

em DRUM (Digital Repository at the University of Maryland)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The goal of this study is to provide a framework for future researchers to understand and use the FARSITE wildfire-forecasting model with data assimilation. Current wildfire models lack the ability to provide accurate prediction of fire front position faster than real-time. When FARSITE is coupled with a recursive ensemble filter, the data assimilation forecast method improves. The scope includes an explanation of the standalone FARSITE application, technical details on FARSITE integration with a parallel program coupler called OpenPALM, and a model demonstration of the FARSITE-Ensemble Kalman Filter software using the FireFlux I experiment by Craig Clements. The results show that the fire front forecast is improved with the proposed data-driven methodology than with the standalone FARSITE model.