4 resultados para Latent advanced systems
em DRUM (Digital Repository at the University of Maryland)
Resumo:
With the continued miniaturization and increasing performance of electronic devices, new technical challenges have arisen. One such issue is delamination occurring at critical interfaces inside the device. This major reliability issue can occur during the manufacturing process or during normal use of the device. Proper evaluation of the adhesion strength of critical interfaces early in the product development cycle can help reduce reliability issues and time-to-market of the product. However, conventional adhesion strength testing is inherently limited in the face of package miniaturization, which brings about further technical challenges to quantify design integrity and reliability. Although there are many different interfaces in today's advanced electronic packages, they can be generalized into two main categories: 1) rigid to rigid connections with a thin flexible polymeric layer in between, or 2) a thin film membrane on a rigid structure. Knowing that every technique has its own advantages and disadvantages, multiple testing methods must be enhanced and developed to be able to accommodate all the interfaces encountered for emerging electronic packaging technologies. For evaluating the adhesion strength of high adhesion strength interfaces in thin multilayer structures a novel adhesion test configuration called “single cantilever adhesion test (SCAT)” is proposed and implemented for an epoxy molding compound (EMC) and photo solder resist (PSR) interface. The test method is then shown to be capable of comparing and selecting the stronger of two potential EMC/PSR material sets. Additionally, a theoretical approach for establishing the applicable testing domain for a four-point bending test method was presented. For evaluating polymeric films on rigid substrates, major testing challenges are encountered for reducing testing scatter and for factoring in the potentially degrading effect of environmental conditioning on the material properties of the film. An advanced blister test with predefined area test method was developed that considers an elasto-plastic analytical solution and implemented for a conformal coating used to prevent tin whisker growth. The advanced blister testing with predefined area test method was then extended by employing a numerical method for evaluating the adhesion strength when the polymer’s film properties are unknown.
Resumo:
This dissertation explores three aspects of the economics and policy issues surrounding retail payments (low-value frequent payments): the microeconomic aspect, by measuring costs associated with retail payment instruments; the macroeconomic aspect, by quantifying the impact of the use of electronic rather than paper-based payment instruments on consumption and GDP; and the policy aspect, by identifying barriers that keep countries stuck with outdated payment systems, and recommending policy interventions to move forward with payments modernization. Payment system modernization has become a prominent part of the financial sector reform agenda in many advanced and developing countries. Greater use of electronic payments rather than cash and other paper-based instruments would have important economic and social benefits, including lower costs and thereby increased economic efficiency and higher incomes, while broadening access to the financial system, notably for people with moderate and low incomes. The dissertation starts with a general introduction on retail payments. Chapter 1 develops a theoretical model for measuring payments costs, and applies the model to Guyana—an emerging market in the midst of the transition from paper to electronic payments. Using primary survey data from Guyanese consumers, the results of the analysis indicate that annual costs related to the use of cash by consumers reach 2.5 percent of the country’s GDP. Switching to electronic payment instruments would provide savings amounting to 1 percent of GDP per year. Chapter 2 broadens the analysis to calculate the macroeconomic impacts of a move to electronic payments. Using a unique panel dataset of 76 countries across the 17-year span from 1998 to 2014 and a pooled OLS country fixed effects model, Chapter 2 finds that on average, use of debit and credit cards contribute USD 16.2 billion to annual global consumption, and USD 160 billion to overall annual global GDP. Chapter 3 provides an in-depth assessment of the Albanian payment cards and remittances market and recommends a set of incentives and regulations (both carrots and sticks) that would allow the country to modernize its payment system. Finally, the conclusion summarizes the lessons of the dissertation’s research and brings forward issues to be explored by future research in the retail payments area.
Resumo:
The atomic-level structure and chemistry of materials ultimately dictate their observed macroscopic properties and behavior. As such, an intimate understanding of these characteristics allows for better materials engineering and improvements in the resulting devices. In our work, two material systems were investigated using advanced electron and ion microscopy techniques, relating the measured nanoscale traits to overall device performance. First, transmission electron microscopy and electron energy loss spectroscopy (TEM-EELS) were used to analyze interfacial states at the semiconductor/oxide interface in wide bandgap SiC microelectronics. This interface contains defects that significantly diminish SiC device performance, and their fundamental nature remains generally unresolved. The impacts of various microfabrication techniques were explored, examining both current commercial and next-generation processing strategies. In further investigations, machine learning techniques were applied to the EELS data, revealing previously hidden Si, C, and O bonding states at the interface, which help explain the origins of mobility enhancement in SiC devices. Finally, the impacts of SiC bias temperature stressing on the interfacial region were explored. In the second system, focused ion beam/scanning electron microscopy (FIB/SEM) was used to reconstruct 3D models of solid oxide fuel cell (SOFC) cathodes. Since the specific degradation mechanisms of SOFC cathodes are poorly understood, FIB/SEM and TEM were used to analyze and quantify changes in the microstructure during performance degradation. Novel strategies for microstructure calculation from FIB-nanotomography data were developed and applied to LSM-YSZ and LSCF-GDC composite cathodes, aged with environmental contaminants to promote degradation. In LSM-YSZ, migration of both La and Mn cations to the grain boundaries of YSZ was observed using TEM-EELS. Few substantial changes however, were observed in the overall microstructure of the cells, correlating with a lack of performance degradation induced by the H2O. Using similar strategies, a series of LSCF-GDC cathodes were analyzed, aged in H2O, CO2, and Cr-vapor environments. FIB/SEM observation revealed considerable formation of secondary phases within these cathodes, and quantifiable modifications of the microstructure. In particular, Cr-poisoning was observed to cause substantial byproduct formation, which was correlated with drastic reductions in cell performance.
Resumo:
Turkey is a non-nuclear member of a nuclear alliance in a region where nuclear proliferation is of particular concern. As the only North Atlantic Treaty Organization (NATO) member that has a border with the Middle East, Turkish officials argue that Turkey cannot solely rely on NATO guarantees in addressing the regional security challenges. However, Turkey has not been able to formulate a security policy that reconciles its quest for independence, its NATO membership, the bilateral relationship with the United States, and regional engagement in the Middle East. This dissertation assesses the strategic implications of Turkey’s perceptions of the U.S./NATO nuclear and conventional deterrence on nuclear issues. It explores three case studies by the process tracing of Turkish policymakers’ nuclear-related decisions on U.S. tactical nuclear weapons deployed in Europe, national air and missile defense, and Iran’s nuclear program. The study finds that the principles of Turkish security policymaking do not incorporate a fundamentally different reasoning on nuclear issues than conventional deterrence. Nuclear weapons and their delivery systems do not have a defining role in Turkish security and defense strategy. The decisions are mainly guided by non-nuclear considerations such as Alliance politics, modernization of the domestic defense industry, and regional influence. The dissertation argues that Turkey could formulate more effective and less risky security policies on nuclear issues by emphasizing the cooperative security approaches within the NATO Alliance over confrontational measures. The findings of this dissertation reveal that a major transformation of Turkish security policymaking is required to end the crisis of confidence with NATO, redefinition of the strategic partnership with the US, and a more cautious approach toward the Middle East. The dissertation argues that Turkey should promote proactive measures to reduce, contain, and counter risks before they develop into real threats, as well as contribute to developing consensual confidence-building measures to reduce uncertainty.