1 resultado para Ladder climbing
em DRUM (Digital Repository at the University of Maryland)
Filtro por publicador
- Abertay Research Collections - Abertay University’s repository (1)
- Aberystwyth University Repository - Reino Unido (2)
- Academic Archive On-line (Jönköping University; Sweden) (2)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Academic Research Repository at Institute of Developing Economies (1)
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (9)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (14)
- Archive of European Integration (1)
- Aston University Research Archive (8)
- Biblioteca de Teses e Dissertações da USP (2)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (8)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (5)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (5)
- Bioline International (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (27)
- Boston University Digital Common (2)
- Brock University, Canada (3)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- CaltechTHESIS (2)
- Cambridge University Engineering Department Publications Database (11)
- CamPuce - an association for the promotion of science and humanities in African Countries (1)
- CentAUR: Central Archive University of Reading - UK (13)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (56)
- Cochin University of Science & Technology (CUSAT), India (1)
- Coffee Science - Universidade Federal de Lavras (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Cornell: DigitalCommons@ILR (1)
- Dalarna University College Electronic Archive (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (2)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons - Montana Tech (4)
- Digital Commons at Florida International University (11)
- Digital Peer Publishing (2)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (5)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (2)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (2)
- FUNDAJ - Fundação Joaquim Nabuco (3)
- Helda - Digital Repository of University of Helsinki (2)
- Indian Institute of Science - Bangalore - Índia (37)
- Instituto Politécnico de Viseu (1)
- Instituto Politécnico do Porto, Portugal (2)
- Memoria Académica - FaHCE, UNLP - Argentina (8)
- National Center for Biotechnology Information - NCBI (15)
- Nottingham eTheses (6)
- Publishing Network for Geoscientific & Environmental Data (1)
- QSpace: Queen's University - Canada (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (12)
- Queensland University of Technology - ePrints Archive (46)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (4)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional da Universidade Federal de São Paulo - UNIFESP (1)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (102)
- Research Open Access Repository of the University of East London. (1)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Scielo España (1)
- Universidad de Alicante (5)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (7)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal de Uberlândia (1)
- Universidade Federal do Pará (11)
- Universidade Federal do Rio Grande do Norte (UFRN) (7)
- Universidade Técnica de Lisboa (1)
- Universita di Parma (1)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (2)
- Université de Montréal (1)
- Université de Montréal, Canada (8)
- University of Connecticut - USA (1)
- University of Michigan (43)
- University of Queensland eSpace - Australia (13)
- University of Southampton, United Kingdom (1)
- University of Washington (1)
- WestminsterResearch - UK (1)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
We present a detailed analysis of the application of a multi-scale Hierarchical Reconstruction method for solving a family of ill-posed linear inverse problems. When the observations on the unknown quantity of interest and the observation operators are known, these inverse problems are concerned with the recovery of the unknown from its observations. Although the observation operators we consider are linear, they are inevitably ill-posed in various ways. We recall in this context the classical Tikhonov regularization method with a stabilizing function which targets the specific ill-posedness from the observation operators and preserves desired features of the unknown. Having studied the mechanism of the Tikhonov regularization, we propose a multi-scale generalization to the Tikhonov regularization method, so-called the Hierarchical Reconstruction (HR) method. First introduction of the HR method can be traced back to the Hierarchical Decomposition method in Image Processing. The HR method successively extracts information from the previous hierarchical residual to the current hierarchical term at a finer hierarchical scale. As the sum of all the hierarchical terms, the hierarchical sum from the HR method provides an reasonable approximate solution to the unknown, when the observation matrix satisfies certain conditions with specific stabilizing functions. When compared to the Tikhonov regularization method on solving the same inverse problems, the HR method is shown to be able to decrease the total number of iterations, reduce the approximation error, and offer self control of the approximation distance between the hierarchical sum and the unknown, thanks to using a ladder of finitely many hierarchical scales. We report numerical experiments supporting our claims on these advantages the HR method has over the Tikhonov regularization method.