4 resultados para Knowledge retrieval, Ontology, User information needs, User profiles, Information retrieval

em DRUM (Digital Repository at the University of Maryland)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the last decade, success of social networks has significantly reshaped how people consume information. Recommendation of contents based on user profiles is well-received. However, as users become dominantly mobile, little is done to consider the impacts of the wireless environment, especially the capacity constraints and changing channel. In this dissertation, we investigate a centralized wireless content delivery system, aiming to optimize overall user experience given the capacity constraints of the wireless networks, by deciding what contents to deliver, when and how. We propose a scheduling framework that incorporates content-based reward and deliverability. Our approach utilizes the broadcast nature of wireless communication and social nature of content, by multicasting and precaching. Results indicate this novel joint optimization approach outperforms existing layered systems that separate recommendation and delivery, especially when the wireless network is operating at maximum capacity. Utilizing limited number of transmission modes, we significantly reduce the complexity of the optimization. We also introduce the design of a hybrid system to handle transmissions for both system recommended contents ('push') and active user requests ('pull'). Further, we extend the joint optimization framework to the wireless infrastructure with multiple base stations. The problem becomes much harder in that there are many more system configurations, including but not limited to power allocation and how resources are shared among the base stations ('out-of-band' in which base stations transmit with dedicated spectrum resources, thus no interference; and 'in-band' in which they share the spectrum and need to mitigate interference). We propose a scalable two-phase scheduling framework: 1) each base station obtains delivery decisions and resource allocation individually; 2) the system consolidates the decisions and allocations, reducing redundant transmissions. Additionally, if the social network applications could provide the predictions of how the social contents disseminate, the wireless networks could schedule the transmissions accordingly and significantly improve the dissemination performance by reducing the delivery delay. We propose a novel method utilizing: 1) hybrid systems to handle active disseminating requests; and 2) predictions of dissemination dynamics from the social network applications. This method could mitigate the performance degradation for content dissemination due to wireless delivery delay. Results indicate that our proposed system design is both efficient and easy to implement.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Authentication plays an important role in how we interact with computers, mobile devices, the web, etc. The idea of authentication is to uniquely identify a user before granting access to system privileges. For example, in recent years more corporate information and applications have been accessible via the Internet and Intranet. Many employees are working from remote locations and need access to secure corporate files. During this time, it is possible for malicious or unauthorized users to gain access to the system. For this reason, it is logical to have some mechanism in place to detect whether the logged-in user is the same user in control of the user's session. Therefore, highly secure authentication methods must be used. We posit that each of us is unique in our use of computer systems. It is this uniqueness that is leveraged to "continuously authenticate users" while they use web software. To monitor user behavior, n-gram models are used to capture user interactions with web-based software. This statistical language model essentially captures sequences and sub-sequences of user actions, their orderings, and temporal relationships that make them unique by providing a model of how each user typically behaves. Users are then continuously monitored during software operations. Large deviations from "normal behavior" can possibly indicate malicious or unintended behavior. This approach is implemented in a system called Intruder Detector (ID) that models user actions as embodied in web logs generated in response to a user's actions. User identification through web logs is cost-effective and non-intrusive. We perform experiments on a large fielded system with web logs of approximately 4000 users. For these experiments, we use two classification techniques; binary and multi-class classification. We evaluate model-specific differences of user behavior based on coarse-grain (i.e., role) and fine-grain (i.e., individual) analysis. A specific set of metrics are used to provide valuable insight into how each model performs. Intruder Detector achieves accurate results when identifying legitimate users and user types. This tool is also able to detect outliers in role-based user behavior with optimal performance. In addition to web applications, this continuous monitoring technique can be used with other user-based systems such as mobile devices and the analysis of network traffic.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Software updates are critical to the security of software systems and devices. Yet users often do not install them in a timely manner, leaving their devices open to security exploits. This research explored a re-design of automatic software updates on desktop and mobile devices to improve the uptake of updates through three studies. First using interviews, we studied users’ updating patterns and behaviors on desktop machines in a formative study. Second, we distilled these findings into the design of a low-fi prototype for desktops, and evaluated its efficacy for automating updates by means of a think-aloud study. Third, we investigated individual differences in update automation on Android devices using a large scale survey, and interviews. In this thesis, I present the findings of all three studies and provide evidence for how automatic updates can be better appropriated to fit users on both desktops and mobile devices. Additionally, I provide user interface design suggestions for software updates and outline recommendations for future work to improve the user experience of software updates.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The ever-increasing number and severity of cybersecurity breaches makes it vital to understand the factors that make organizations vulnerable. Since humans are considered the weakest link in the cybersecurity chain of an organization, this study evaluates users’ individual differences (demographic factors, risk-taking preferences, decision-making styles and personality traits) to understand online security behavior. This thesis studies four different yet tightly related online security behaviors that influence organizational cybersecurity: device securement, password generation, proactive awareness and updating. A survey (N=369) of students, faculty and staff in a large mid-Atlantic U.S. public university identifies individual characteristics that relate to online security behavior and characterizes the higher-risk individuals that pose threats to the university’s cybersecurity. Based on these findings and insights from interviews with phishing victims, the study concludes with recommendations to help similat organizations increase end-user cybersecurity compliance and mitigate the risks caused by humans in the organizational cybersecurity chain.