3 resultados para KNOWLEDGE REPRESENTATION AND REASONING
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Since the beginning of the Haitian theatrical tradition there has been an ineluctable dedication to the representation of Haitian history on stage. Given the rich theatrical archive about Haiti throughout the world, this study considers operas and plays written solely by Haitian playwrights. By delving into the works of Juste Chanlatte, Massillon Coicou, and Vendenesse Ducasse this study proposes a re-reading of Haitian theater that considers the stage as an innovative site for contesting negative and clichéd representations of the Haitian Revolution and its revolutionary leadership. A genre long mired in accusations of mimicking European literary forms, this study proposes a reevaluation of Haitian theater and its literary origins.
Resumo:
In the past decade, systems that extract information from millions of Internet documents have become commonplace. Knowledge graphs -- structured knowledge bases that describe entities, their attributes and the relationships between them -- are a powerful tool for understanding and organizing this vast amount of information. However, a significant obstacle to knowledge graph construction is the unreliability of the extracted information, due to noise and ambiguity in the underlying data or errors made by the extraction system and the complexity of reasoning about the dependencies between these noisy extractions. My dissertation addresses these challenges by exploiting the interdependencies between facts to improve the quality of the knowledge graph in a scalable framework. I introduce a new approach called knowledge graph identification (KGI), which resolves the entities, attributes and relationships in the knowledge graph by incorporating uncertain extractions from multiple sources, entity co-references, and ontological constraints. I define a probability distribution over possible knowledge graphs and infer the most probable knowledge graph using a combination of probabilistic and logical reasoning. Such probabilistic models are frequently dismissed due to scalability concerns, but my implementation of KGI maintains tractable performance on large problems through the use of hinge-loss Markov random fields, which have a convex inference objective. This allows the inference of large knowledge graphs using 4M facts and 20M ground constraints in 2 hours. To further scale the solution, I develop a distributed approach to the KGI problem which runs in parallel across multiple machines, reducing inference time by 90%. Finally, I extend my model to the streaming setting, where a knowledge graph is continuously updated by incorporating newly extracted facts. I devise a general approach for approximately updating inference in convex probabilistic models, and quantify the approximation error by defining and bounding inference regret for online models. Together, my work retains the attractive features of probabilistic models while providing the scalability necessary for large-scale knowledge graph construction. These models have been applied on a number of real-world knowledge graph projects, including the NELL project at Carnegie Mellon and the Google Knowledge Graph.
Resumo:
The main purpose of the current study was to examine the role of vocabulary knowledge (VK) and syntactic knowledge (SK) in L2 listening comprehension, as well as their relative significance. Unlike previous studies, the current project employed assessment tasks to measure aural and proceduralized VK and SK. In terms of VK, to avoid under-representing the construct, measures of both breadth (VB) and depth (VD) were included. Additionally, the current study examined the role of VK and SK by accounting for individual differences in two important cognitive factors in L2 listening: metacognitive knowledge (MK) and working memory (WM). Also, to explore the role of VK and SK more fully, the current study accounted for the negative impact of anxiety on WM and L2 listening. The study was carried out in an English as a Foreign Language (EFL) context, and participants were 263 Iranian learners at a wide range of English proficiency from lower-intermediate to advanced. Participants took a battery of ten linguistic, cognitive and affective measures. Then, the collected data were subjected to several preliminary analyses, but structural equation modeling (SEM) was then used as the primary analysis method to answer the study research questions. Results of the preliminary analyses revealed that MK and WM were significant predictors of L2 listening ability; thus, they were kept in the main SEM analyses. The significant role of WM was only observed when the negative effect of anxiety on WM was accounted for. Preliminary analyses also showed that VB and VD were not distinct measures of VK. However, the results also showed that if VB and VD were considered separate, VD was a better predictor of L2 listening success. The main analyses of the current study revealed a significant role for both VK and SK in explaining success in L2 listening comprehension, which differs from findings from previous empirical studies. However, SEM analysis did not reveal a statistically significant difference in terms of the predictive power of the two linguistic factors. Descriptive results of the SEM analysis, along with results from regression analysis, indicated to a more significant role for VK.