6 resultados para K110 Architectural Design Theory

em DRUM (Digital Repository at the University of Maryland)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The performance, energy efficiency and cost improvements due to traditional technology scaling have begun to slow down and present diminishing returns. Underlying reasons for this trend include fundamental physical limits of transistor scaling, the growing significance of quantum effects as transistors shrink, and a growing mismatch between transistors and interconnects regarding size, speed and power. Continued Moore's Law scaling will not come from technology scaling alone, and must involve improvements to design tools and development of new disruptive technologies such as 3D integration. 3D integration presents potential improvements to interconnect power and delay by translating the routing problem into a third dimension, and facilitates transistor density scaling independent of technology node. Furthermore, 3D IC technology opens up a new architectural design space of heterogeneously-integrated high-bandwidth CPUs. Vertical integration promises to provide the CPU architectures of the future by integrating high performance processors with on-chip high-bandwidth memory systems and highly connected network-on-chip structures. Such techniques can overcome the well-known CPU performance bottlenecks referred to as memory and communication wall. However the promising improvements to performance and energy efficiency offered by 3D CPUs does not come without cost, both in the financial investments to develop the technology, and the increased complexity of design. Two main limitations to 3D IC technology have been heat removal and TSV reliability. Transistor stacking creates increases in power density, current density and thermal resistance in air cooled packages. Furthermore the technology introduces vertical through silicon vias (TSVs) that create new points of failure in the chip and require development of new BEOL technologies. Although these issues can be controlled to some extent using thermal-reliability aware physical and architectural 3D design techniques, high performance embedded cooling schemes, such as micro-fluidic (MF) cooling, are fundamentally necessary to unlock the true potential of 3D ICs. A new paradigm is being put forth which integrates the computational, electrical, physical, thermal and reliability views of a system. The unification of these diverse aspects of integrated circuits is called Co-Design. Independent design and optimization of each aspect leads to sub-optimal designs due to a lack of understanding of cross-domain interactions and their impacts on the feasibility region of the architectural design space. Co-Design enables optimization across layers with a multi-domain view and thus unlocks new high-performance and energy efficient configurations. Although the co-design paradigm is becoming increasingly necessary in all fields of IC design, it is even more critical in 3D ICs where, as we show, the inter-layer coupling and higher degree of connectivity between components exacerbates the interdependence between architectural parameters, physical design parameters and the multitude of metrics of interest to the designer (i.e. power, performance, temperature and reliability). In this dissertation we present a framework for multi-domain co-simulation and co-optimization of 3D CPU architectures with both air and MF cooling solutions. Finally we propose an approach for design space exploration and modeling within the new Co-Design paradigm, and discuss the possible avenues for improvement of this work in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

What if the architectural process of making could incorporate time? All designers who impact the physical environment- consciously and unconsciously are gatekeepers of the past, commentators of the present, and speculators of the future. This project proposes the creation of architecture and adaptive public space that looks to historical memories, foster present day cultural formation, and new alternative visions for the city of the future. The thesis asks what it means to design for stasis and change in a variety of scales- urban, architectural, and detail and arrives at a speculated new neighborhood, institutional buildings, and landscape. Central to this project is the idea of the architect as archeologist, anthropologist, and artist. The project focuses on a rapidly changing part of the city of Fort Worth, Texas and assigns a multipurpose institutional buildings and public space as a method of investigation. The thesis hopes to further architectural discourse about into the role of architecture in the preservation of memory, adaptive potential of public spaces, and the role of time in architecture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In 1620, over the course of 66 days, 102 passengers called the Mayflower their home before arriving and settling in Plymouth, New England. In the years following the Louisiana Purchase of 1803 nearly 7 million people traversed extreme wilderness in covered wagons to found and settle the American West. This year, 2015, the first spaceport has opened in anticipation of sub orbital space flights in 2017 and manned settlement flights to mars by 2026. This thesis explores the questions: In this next phase of human exploration and settlement, what does it mean to dwell beyond earth? What are the current architectural limitations regarding structure and material sustainability? And, How can architecture elevate the traditionally sterile environments of survival shelters to that of permanent dwellings?

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this dissertation, I study three problems in market design: the allocation of resources to schools using deferred acceptance algorithms, the demand reduction of employees on centralized labor markets, and the alleviation of traffic congestion. I show how institutional and behavioral considerations specific to each problem can alleviate several practical limitations faced by current solutions. For the case of traffic congestion, I show experimentally that the proposed solution is effective. In Chapter 1, I investigate how school districts could assign resources to schools when it is desirable to provide stable assignments. An assignment is stable if there is no student currently assigned to a school that would prefer to be assigned to a different school that would admit him if it had the resources. Current assignment algorithms assume resources are fixed. I show how simple modifications to these algorithms produce stable allocations of resources and students to schools. In Chapter 2, I show how the negotiation of salaries within centralized labor markets using deferred acceptance algorithms eliminates the incentives of the hiring firms to strategically reduce their demand. It is well-known that it is impossible to eliminate these incentives for the hiring firms in markets without negotiation of salaries. Chapter 3 investigates how to achieve an efficient distribution of traffic congestion on a road network. Traffic congestion is the product of an externality: drivers do not consider the cost they impose on other drivers by entering a road. In theory, Pigouvian prices would solve the problem. In practice, however, these prices face two important limitations: i) the information required to calculate these prices is unavailable to policy makers and ii) these prices would effectively be new taxes that would transfer resources from the public to the government. I show how to construct congestion prices that retrieve the required information from the drivers and do not transfer resources to the government. I circumvent the limitations of Pigouvian prices by assuming that individuals make some mistakes when selecting routes and have a tendency towards truth-telling. Both assumptions are very robust observations in experimental economics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Scientific studies exploring the environmental and experiential elements that help boost human happiness have become a significant and expanding body of work. Some urban designers, architects and planners are looking to apply this knowledge through policy decisions and design, but there is a great deal of room for further study and exploration. This paper looks at definitions of happiness and happiness measurements used in research. The paper goes on to introduce six environmental factors identified in a literature review that have design implications relating to happiness: Nature, Light, Surprise, Access, Identity, and Sociality. Architectural precedents are examined and design strategies are proposed for each factor, which are then applied to a test case site and building in Baltimore, Maryland. It is anticipated that these factors and strategies will be useful to architects, urban designers and planners as they endeavor to design positive user experiences and set city shaping policy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metamamterials are 1D, 2D or 3D arrays of articial atoms. The articial atoms, called "meta-atoms", can be any component with tailorable electromagnetic properties, such as resonators, LC circuits, nano particles, and so on. By designing the properties of individual meta-atoms and the interaction created by putting them in a lattice, one can create a metamaterial with intriguing properties not found in nature. My Ph. D. work examines the meta-atoms based on radio frequency superconducting quantum interference devices (rf-SQUIDs); their tunability with dc magnetic field, rf magnetic field, and temperature are studied. The rf-SQUIDs are superconducting split ring resonators in which the usual capacitance is supplemented with a Josephson junction, which introduces strong nonlinearity in the rf properties. At relatively low rf magnetic field, a magnetic field tunability of the resonant frequency of up to 80 THz/Gauss by dc magnetic field is observed, and a total frequency tunability of 100% is achieved. The macroscopic quantum superconducting metamaterial also shows manipulative self-induced broadband transparency due to a qualitatively novel nonlinear mechanism that is different from conventional electromagnetically induced transparency (EIT) or its classical analogs. A near complete disappearance of resonant absorption under a range of applied rf flux is observed experimentally and explained theoretically. The transparency comes from the intrinsic bi-stability and can be tuned on/ off easily by altering rf and dc magnetic fields, temperature and history. Hysteretic in situ 100% tunability of transparency paves the way for auto-cloaking metamaterials, intensity dependent filters, and fast-tunable power limiters. An rf-SQUID metamaterial is shown to have qualitatively the same behavior as a single rf-SQUID with regards to dc flux, rf flux and temperature tuning. The two-tone response of self-resonant rf-SQUID meta-atoms and metamaterials is then studied here via intermodulation (IM) measurement over a broad range of tone frequencies and tone powers. A sharp onset followed by a surprising strongly suppressed IM region near the resonance is observed. This behavior can be understood employing methods in nonlinear dynamics; the sharp onset, and the gap of IM, are due to sudden state jumps during a beat of the two-tone sum input signal. The theory predicts that the IM can be manipulated with tone power, center frequency, frequency difference between the two tones, and temperature. This quantitative understanding potentially allows for the design of rf-SQUID metamaterials with either very low or very high IM response.