6 resultados para Joint economic design

em DRUM (Digital Repository at the University of Maryland)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the last decade, success of social networks has significantly reshaped how people consume information. Recommendation of contents based on user profiles is well-received. However, as users become dominantly mobile, little is done to consider the impacts of the wireless environment, especially the capacity constraints and changing channel. In this dissertation, we investigate a centralized wireless content delivery system, aiming to optimize overall user experience given the capacity constraints of the wireless networks, by deciding what contents to deliver, when and how. We propose a scheduling framework that incorporates content-based reward and deliverability. Our approach utilizes the broadcast nature of wireless communication and social nature of content, by multicasting and precaching. Results indicate this novel joint optimization approach outperforms existing layered systems that separate recommendation and delivery, especially when the wireless network is operating at maximum capacity. Utilizing limited number of transmission modes, we significantly reduce the complexity of the optimization. We also introduce the design of a hybrid system to handle transmissions for both system recommended contents ('push') and active user requests ('pull'). Further, we extend the joint optimization framework to the wireless infrastructure with multiple base stations. The problem becomes much harder in that there are many more system configurations, including but not limited to power allocation and how resources are shared among the base stations ('out-of-band' in which base stations transmit with dedicated spectrum resources, thus no interference; and 'in-band' in which they share the spectrum and need to mitigate interference). We propose a scalable two-phase scheduling framework: 1) each base station obtains delivery decisions and resource allocation individually; 2) the system consolidates the decisions and allocations, reducing redundant transmissions. Additionally, if the social network applications could provide the predictions of how the social contents disseminate, the wireless networks could schedule the transmissions accordingly and significantly improve the dissemination performance by reducing the delivery delay. We propose a novel method utilizing: 1) hybrid systems to handle active disseminating requests; and 2) predictions of dissemination dynamics from the social network applications. This method could mitigate the performance degradation for content dissemination due to wireless delivery delay. Results indicate that our proposed system design is both efficient and easy to implement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research-design thesis explores the implementation of Regenerative Stormwater Conveyance (RSC) as a retrofit of an existing impervious drainage system in a small catchment in the degraded Jones Falls watershed in Baltimore City. An introduction to RSC is provided, placing its development within a theoretical context of novel ecosystems, biomimicry and Nassauer and Opdam’s (2008) model of landscape innovation. The case site is in Baltimore’s Hampden neighborhood on City-owned land adjacent to rowhomes, open space and an access point to a popular wooded trail along a local stream. The design proposal employs RSC to retrofit an ill-performing stormwater system, simultaneously providing a range of ecological, social and economic services; water quantity, water quality and economic performance of the proposed RSC are quantified. While the proposed design is site-specific the model is adaptable for retrofitting other small-scale impervious drainage systems, providing a strategic tool in addressing Baltimore City’s stormwater challenges.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this dissertation, I study three problems in market design: the allocation of resources to schools using deferred acceptance algorithms, the demand reduction of employees on centralized labor markets, and the alleviation of traffic congestion. I show how institutional and behavioral considerations specific to each problem can alleviate several practical limitations faced by current solutions. For the case of traffic congestion, I show experimentally that the proposed solution is effective. In Chapter 1, I investigate how school districts could assign resources to schools when it is desirable to provide stable assignments. An assignment is stable if there is no student currently assigned to a school that would prefer to be assigned to a different school that would admit him if it had the resources. Current assignment algorithms assume resources are fixed. I show how simple modifications to these algorithms produce stable allocations of resources and students to schools. In Chapter 2, I show how the negotiation of salaries within centralized labor markets using deferred acceptance algorithms eliminates the incentives of the hiring firms to strategically reduce their demand. It is well-known that it is impossible to eliminate these incentives for the hiring firms in markets without negotiation of salaries. Chapter 3 investigates how to achieve an efficient distribution of traffic congestion on a road network. Traffic congestion is the product of an externality: drivers do not consider the cost they impose on other drivers by entering a road. In theory, Pigouvian prices would solve the problem. In practice, however, these prices face two important limitations: i) the information required to calculate these prices is unavailable to policy makers and ii) these prices would effectively be new taxes that would transfer resources from the public to the government. I show how to construct congestion prices that retrieve the required information from the drivers and do not transfer resources to the government. I circumvent the limitations of Pigouvian prices by assuming that individuals make some mistakes when selecting routes and have a tendency towards truth-telling. Both assumptions are very robust observations in experimental economics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Good schools are essential for building thriving urban areas. They are important for preparing the future human resource and directly contribute to social and economic development of a place. They not only act as magnets for prospective residents, but also are necessary for retaining current population. As public infrastructure, schools mirror their neighborhood. “Their location, design and physical condition are important determinants of neighborhood quality, regional growth and change, and quality of life.”2 They impact housing development and utility requirements among many things. Hence, planning for schools along with other infrastructure in an area is essential. Schools are very challenging to plan, especially in urbanizing areas with changing demographic dynamics, where the development market and housing development can shift drastically a number of times. In such places projecting the future school enrollments is very difficult and in case of large population influx, school development can be unable to catch up with population growth which results in overcrowding. Typical is the case of Arlington County VA. In the past two decades the County has changed dramatically from a collection of bedroom communities in Washington DC Metro Region to a thriving urban area. Its metro accessible urban corridors are among most desired locations for development in the region. However, converting single family neighborhoods into high density areas has put a lot of pressure on its school facilities and has resulted in overcrowded schools. Its public school enrollment has grown by 19% from 2009 to 2014.3 While the percentage of population under 5 years age has increased in last 10 years, those in the 5-19 age group have decreased4. Hence, there is more pressure on the elementary school facilities than others in the County. Design-wise, elementary schools, due to their size, can be imagined as a community component. There are a number of strategies that can be used to develop elementary school in urbanizing areas as a part of the neighborhood. Experimenting with space planning and building on partnership and mixed-use opportunities can help produce better designs for new schools in future. This thesis is an attempt to develop elementary school models for urbanizing areas of Arlington County. The school models will be designed keeping in mind the shifting nature of population and resulting student enrollments in these areas. They will also aim to be efficient and sustainable, and lead to the next generation design for elementary school education. The overall purpose of the project is to address barriers to elementary school development in urbanizing areas through creative design and planning strategies. To test above mentioned ideas, the Joint-Use School typology of housing +school design has been identified for elementary school development in urbanizing areas in this thesis project. The development is based on the Arlington Public School’s Program guidelines (catering to 600 students). The site selected for this project is Clarendon West (part of Red Top Cab Properties) in Clarendon, Arlington County VA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This design-research thesis suggests that the improvement of North East Street performances by using Complete Streets, Green Street, Place Making and Context Sensitive Solution principles and practices. Heavily used by a variety of users, often conflicting with one another, University of Maryland Campus Drive would benefit from a major planning and design amelioration to meet the increasing demands of serving as a city main street. The goal of this thesis project is to prioritize the benefits for pedestrians in the right-of-way and improve the pedestrian experience. This goal also responds to the recent North East Street Extension Phrase I of economic renaissances. The goal of this design-research thesis will be achieved focusing on four aspects. First, the plans and designs will suggest to building mixed use blocks, increase the diversity of street economic types and convenience of people’s living. Second, design and plans will propose bike lanes, separate driving lanes from sidewalks and bike lanes by street tree planters, and narrow driving lanes to reduce vehicular traffic volume and speed in order to reduce pedestrian and vehicle conflicts. Third, plans and designs will introduce bioswales, living walls and raingardens to treat and reuse rain water. Finally, the plans and designs will seek to preserve local culture and history by adding murals and farmers market. The outcome of the design-research thesis project is expected to serve as an example of implementing Complete Streets, Green Street, Place Making and Context Sensitive Solution principles and practices in urban landscape, where transportation, environment and social needs interact with each other.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wireless power transfer (WPT) and radio frequency (RF)-based energy har- vesting arouses a new wireless network paradigm termed as wireless powered com- munication network (WPCN), where some energy-constrained nodes are enabled to harvest energy from the RF signals transferred by other energy-sufficient nodes to support the communication operations in the network, which brings a promising approach for future energy-constrained wireless network design. In this paper, we focus on the optimal WPCN design. We consider a net- work composed of two communication groups, where the first group has sufficient power supply but no available bandwidth, and the second group has licensed band- width but very limited power to perform required information transmission. For such a system, we introduce the power and bandwidth cooperation between the two groups so that both group can accomplish their expected information delivering tasks. Multiple antennas are employed at the hybrid access point (H-AP) to en- hance both energy and information transfer efficiency and the cooperative relaying is employed to help the power-limited group to enhance its information transmission throughput. Compared with existing works, cooperative relaying, time assignment, power allocation, and energy beamforming are jointly designed in a single system. Firstly, we propose a cooperative transmission protocol for the considered system, where group 1 transmits some power to group 2 to help group 2 with information transmission and then group 2 gives some bandwidth to group 1 in return. Sec- ondly, to explore the information transmission performance limit of the system, we formulate two optimization problems to maximize the system weighted sum rate by jointly optimizing the time assignment, power allocation, and energy beamforming under two different power constraints, i.e., the fixed power constraint and the aver- age power constraint, respectively. In order to make the cooperation between the two groups meaningful and guarantee the quality of service (QoS) requirements of both groups, the minimal required data rates of the two groups are considered as constraints for the optimal system design. As both problems are non-convex and have no known solutions, we solve it by using proper variable substitutions and the semi-definite relaxation (SDR). We theoretically prove that our proposed solution method can guarantee to find the global optimal solution. Thirdly, consider that the WPCN has promising application potentials in future energy-constrained net- works, e.g., wireless sensor network (WSN), wireless body area network (WBAN) and Internet of Things (IoT), where the power consumption is very critical. We investigate the minimal power consumption optimal design for the considered co- operation WPCN. For this, we formulate an optimization problem to minimize the total consumed power by jointly optimizing the time assignment, power allocation, and energy beamforming under required data rate constraints. As the problem is also non-convex and has no known solutions, we solve it by using some variable substitutions and the SDR method. We also theoretically prove that our proposed solution method for the minimal power consumption design guarantees the global optimal solution. Extensive experimental results are provided to discuss the system performance behaviors, which provide some useful insights for future WPCN design. It shows that the average power constrained system achieves higher weighted sum rate than the fixed power constrained system. Besides, it also shows that in such a WPCN, relay should be placed closer to the multi-antenna H-AP to achieve higher weighted sum rate and consume lower total power.