3 resultados para Irrigation pumps.

em DRUM (Digital Repository at the University of Maryland)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water quality of parking lot (~1,858 m2) stormwater runoff and its treated effluent flow were analyzed for total phosphorus (TP), total nitrogen (TN), total suspended solids (TSS), electrical conductivity (EC), copper, lead and zinc. The novel system under investigation, located at the University of Maryland, College Park, Maryland, includes a standard bioretention facility, underdrained to a cistern to store treated stormwater, and pumped to a vegetable garden for irrigation. The site abstraction, the average bioretention abstraction, and bowl volumes were estimated to be 8500, 4378, and 895 L, respectively; this indicates that rain events of more than 0.45 cm are necessary to produce runoff and more than 0.75 cm will produce system overflow. The cistern water quality indicates good-to-excellent treatment by the system. Compared to local tap water, cistern water has lower concentrations of TP, TN, EC (non-winter), copper, and zinc, indicating a good water source for irrigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cost of electricity, a major operating cost of municipal wastewater treatment plants, is related to influent flow rate, power price, and power load. With knowledge of inflow and price patterns, plant operators can manage processes to reduce electricity costs. Records of influent flow, power price, and load are evaluated for Blue Plains Advanced Wastewater Treatment Plant. Diurnal and seasonal trends are analyzed. Power usage is broken down among treatment processes. A simulation model of influent pumping, a large power user, is developed. It predicts pump discharge and power usage based on wet-well level. Individual pump characteristics are tested in the plant. The model accurately simulates plant inflow and power use for two pumping stations [R2 = 0.68, 0.93 (inflow), R2 =0.94, 0.91(power)]. Wet-well stage-storage relationship is estimated from data. Time-varying wet-well level is added to the model. A synthetic example demonstrates application in managing pumps to reduce electricity cost.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Green roofs are one solution to stormwater runoff which is a major environmental problem. However, the majority of green roofs are primarily implemented on flat roofed commercial buildings and not residential homes with sloped roofs. Team SO GREEN designed a light-weight green roof system retrofit for residential homes. Between June and November 2014, green roof performance data was collected and compared between the designed sloped roofs and a non-sloped control. The sloped design performed well and one test slope was improved with a recirculating irrigation system. An economic analysis was made and a focus group determined preliminary consumer interest, aesthetic preferences, and barriers. This study enriches the body of knowledge regarding bringing green roof systems to the residential home market.