4 resultados para Inverse analysis
em DRUM (Digital Repository at the University of Maryland)
Resumo:
We present a detailed analysis of the application of a multi-scale Hierarchical Reconstruction method for solving a family of ill-posed linear inverse problems. When the observations on the unknown quantity of interest and the observation operators are known, these inverse problems are concerned with the recovery of the unknown from its observations. Although the observation operators we consider are linear, they are inevitably ill-posed in various ways. We recall in this context the classical Tikhonov regularization method with a stabilizing function which targets the specific ill-posedness from the observation operators and preserves desired features of the unknown. Having studied the mechanism of the Tikhonov regularization, we propose a multi-scale generalization to the Tikhonov regularization method, so-called the Hierarchical Reconstruction (HR) method. First introduction of the HR method can be traced back to the Hierarchical Decomposition method in Image Processing. The HR method successively extracts information from the previous hierarchical residual to the current hierarchical term at a finer hierarchical scale. As the sum of all the hierarchical terms, the hierarchical sum from the HR method provides an reasonable approximate solution to the unknown, when the observation matrix satisfies certain conditions with specific stabilizing functions. When compared to the Tikhonov regularization method on solving the same inverse problems, the HR method is shown to be able to decrease the total number of iterations, reduce the approximation error, and offer self control of the approximation distance between the hierarchical sum and the unknown, thanks to using a ladder of finitely many hierarchical scales. We report numerical experiments supporting our claims on these advantages the HR method has over the Tikhonov regularization method.
Resumo:
This dissertation investigates the connection between spectral analysis and frame theory. When considering the spectral properties of a frame, we present a few novel results relating to the spectral decomposition. We first show that scalable frames have the property that the inner product of the scaling coefficients and the eigenvectors must equal the inverse eigenvalues. From this, we prove a similar result when an approximate scaling is obtained. We then focus on the optimization problems inherent to the scalable frames by first showing that there is an equivalence between scaling a frame and optimization problems with a non-restrictive objective function. Various objective functions are considered, and an analysis of the solution type is presented. For linear objectives, we can encourage sparse scalings, and with barrier objective functions, we force dense solutions. We further consider frames in high dimensions, and derive various solution techniques. From here, we restrict ourselves to various frame classes, to add more specificity to the results. Using frames generated from distributions allows for the placement of probabilistic bounds on scalability. For discrete distributions (Bernoulli and Rademacher), we bound the probability of encountering an ONB, and for continuous symmetric distributions (Uniform and Gaussian), we show that symmetry is retained in the transformed domain. We also prove several hyperplane-separation results. With the theory developed, we discuss graph applications of the scalability framework. We make a connection with graph conditioning, and show the in-feasibility of the problem in the general case. After a modification, we show that any complete graph can be conditioned. We then present a modification of standard PCA (robust PCA) developed by Cand\`es, and give some background into Electron Energy-Loss Spectroscopy (EELS). We design a novel scheme for the processing of EELS through robust PCA and least-squares regression, and test this scheme on biological samples. Finally, we take the idea of robust PCA and apply the technique of kernel PCA to perform robust manifold learning. We derive the problem and present an algorithm for its solution. There is also discussion of the differences with RPCA that make theoretical guarantees difficult.
Resumo:
The central motif of this work is prediction and optimization in presence of multiple interacting intelligent agents. We use the phrase `intelligent agents' to imply in some sense, a `bounded rationality', the exact meaning of which varies depending on the setting. Our agents may not be `rational' in the classical game theoretic sense, in that they don't always optimize a global objective. Rather, they rely on heuristics, as is natural for human agents or even software agents operating in the real-world. Within this broad framework we study the problem of influence maximization in social networks where behavior of agents is myopic, but complication stems from the structure of interaction networks. In this setting, we generalize two well-known models and give new algorithms and hardness results for our models. Then we move on to models where the agents reason strategically but are faced with considerable uncertainty. For such games, we give a new solution concept and analyze a real-world game using out techniques. Finally, the richest model we consider is that of Network Cournot Competition which deals with strategic resource allocation in hypergraphs, where agents reason strategically and their interaction is specified indirectly via player's utility functions. For this model, we give the first equilibrium computability results. In all of the above problems, we assume that payoffs for the agents are known. However, for real-world games, getting the payoffs can be quite challenging. To this end, we also study the inverse problem of inferring payoffs, given game history. We propose and evaluate a data analytic framework and we show that it is fast and performant.
Resumo:
The current study is a post-hoc analysis of data from the original randomized control trial of the Play and Language for Autistic Youngsters (PLAY) Home Consultation program, a parent-mediated, DIR/Floortime based early intervention program for children with ASD (Solomon, Van Egeren, Mahone, Huber, & Zimmerman, 2014). We examined 22 children from the original RCT who received the PLAY program. Children were split into two groups (high and lower functioning) based on the ADOS module administered prior to intervention. Fifteen-minute parent-child video sessions were coded through the use of CHILDES transcription software. Child and maternal language, communicative behaviors, and communicative functions were assessed in the natural language samples both pre- and post-intervention. Results demonstrated significant improvements in both child and maternal behaviors following intervention. There was a significant increase in child verbal and non-verbal initiations and verbal responses in whole group analysis. Total number of utterances, word production, and grammatical complexity all significantly improved when viewed across the whole group of participants; however, lexical growth did not reach significance. Changes in child communicative function were especially noteworthy, and demonstrated a significant increase in social interaction and a significant decrease in non-interactive behaviors. Further, mothers demonstrated an increase in responsiveness to the child’s conversational bids, increased ability to follow the child’s lead, and a decrease in directiveness. When separated for analyses within groups, trends emerged for child and maternal variables, suggesting greater gains in use of communicative function in both high and low groups over changes in linguistic structure. Additional analysis also revealed a significant inverse relationship between maternal responsiveness and child non-interactive behaviors; as mothers became more responsive, children’s non-engagement was decreased. Such changes further suggest that changes in learned skills following PLAY parent training may result in improvements in child social interaction and language abilities.