3 resultados para Internal factors
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Two out of three English Language Learners (ELLs) graduate from secondary schools nationwide. Of the nearly five million ELLs in public schools, more than 70% of these students’ first language is Spanish. In order to understand and resolve this phenomena and in an effort to increase the number of graduates, this research examined what high school Latino ELLs identified as the major external and internal factors that support or challenge them on the graduation pathway. The study utilized a 32 quantitative and qualitative question student survey, as well as student focus groups. Both the survey and the focus groups were conducted in English and Spanish. The questions considered the following factors: 1) value of education; 2) expectations in achieving their long-term goals; 3) current education levels; 4) expectations before coming to the United States; 5) family obligations; and 6) future aspirations. The survey was administered to 159 Latino ELLs enrolled in grades 9-12. Research took place at three high schools that provide English for Speakers of Other Languages (ESOL) classes in a large school system in the Mid-Atlantic region. The three schools involved in the study have more than 1,500 ELLs. Two of the schools had large ESOL instructional programs, and one school had a comparatively smaller ESOL program. The majority of students surveyed were from El Salvador (72%) and Guatemala (12.6%). Using Qualtrics, an independent facilitator and a bilingual translator administered the online survey tool to the students during their ESOL classes. Two weeks later, the researcher hosted three follow-up focus groups, totaling 37 students from those students who took the survey. Each focus group was conducted at the three schools by the lead researcher and the translator. The purpose of the focus group was to obtain deeper insight on how secondary age Latino ELLs defined success in school, what they identified to be their support factors, and how previous and present experiences helped or hindered their goals. From the research findings, ten recommendations range from suggested policy updates to cross-cultural/equity training for students and staff; they were developed, stemming from the findings and what the students identified.
Resumo:
There is a long history of debate around mathematics standards, reform efforts, and accountability. This research identified ways that national expectations and context drive local implementation of mathematics reform efforts and identified the external and internal factors that impact teachers’ acceptance or resistance to policy implementation at the local level. This research also adds to the body of knowledge about acceptance and resistance to policy implementation efforts. This case study involved the analysis of documents to provide a chronological perspective, assess the current state of the District’s mathematics reform, and determine the District’s readiness to implement the Common Core Curriculum. The school system in question has continued to struggle with meeting the needs of all students in Algebra 1. Therefore, the results of this case study will be useful to the District’s leaders as they include the compilation and analysis of a decade’s worth of data specific to Algebra 1.
Resumo:
Renewable energy technologies have long-term economic and environmental advantages over fossil fuels, and solar power is the most abundant renewable resource, supplying 120 PW over earth’s surface. In recent years the cost of photovoltaic modules has reached grid parity in many areas of the world, including much of the USA. A combination of economic and environmental factors has encouraged the adoption of solar technology and led to an annual growth rate in photovoltaic capacity of 76% in the US between 2010 and 2014. Despite the enormous growth of the solar energy industry, commercial unit efficiencies are still far below their theoretical limits. A push for thinner cells may reduce device cost and could potentially increase device performance. Fabricating thinner cells reduces bulk recombination, but at the cost of absorbing less light. This tradeoff generally benefits thinner devices due to reduced recombination. The effect continues up to a maximum efficiency where the benefit of reduced recombination is overwhelmed by the suppressed absorption. Light trapping allows the solar cell to circumvent this limitation and realize further performance gains (as well as continue cost reduction) from decreasing the device thickness. This thesis presents several advances in experimental characterization, theoretical modeling, and device applications for light trapping in thin-film solar cells. We begin by introducing light trapping strategies and discuss theoretical limits of light trapping in solar cells. This is followed by an overview of the equipment developed for light trapping characterization. Next we discuss our recent work measuring internal light scattering and a new model of scattering to predict the effects of dielectric nanoparticle back scatterers on thin-film device absorption. The new model is extended and generalized to arbitrary stacks of stratified media containing scattering structures. Finally, we investigate an application of these techniques using polymer dispersed liquid crystals to produce switchable solar windows. We show that these devices have the potential for self-powering.