4 resultados para Internal dynamics
em DRUM (Digital Repository at the University of Maryland)
Resumo:
A large SAV bed in upper Chesapeake Bay has experienced several abrupt shifts over the past half-century, beginning with near-complete loss after a record-breaking flood in 1972, followed by an unexpected, rapid resurgence in the early 2000’s, then partial decline in 2011 following another major flood event. Together, these trends and events provide a unique opportunity to study a recovering SAV ecosystem from several different perspectives. First, I analyzed and synthesized existing time series datasets to make inferences about what factors prompted the recovery. Next, I analyzed existing datasets, together with field samples and a simple hydrodynamic model to investigate mechanisms of SAV bed loss and resilience to storm events. Finally, I conducted field deployments and experiments to explore how the bed affects internal physical and biogeochemical processes and what implications those effects have for the dynamics of the system. I found that modest reductions in nutrient loading, coupled with several consecutive dry years likely facilitated the SAV resurgence. Furthermore, positive feedback processes may have played a role in the sudden nature of the recovery because they could have reinforced the state of the bed before and after the abrupt shift. I also found that scour and poor water clarity associated with sediment deposition during the 2011 flood event were mechanisms of plant loss. However, interactions between the bed, water flow, and waves served as mechanisms of resilience because these processes created favorable growing conditions (i.e., clear water, low flow velocities) in the inner core of the bed. Finally, I found that that interactions between physical and biogeochemical processes led to low nutrient concentrations inside the bed relative to outside the bed, which created conditions that precluded algal growth and reinforced vascular plant dominance. This work demonstrates that positive feedbacks play a central role in SAV resilience to both chronic eutrophication as well as acute storm events. Furthermore, I show that analysis of long-term ecological monitoring data, together with field measurements and experiments, can be an effective approach for understanding the mechanisms underlying ecosystem dynamics.
Resumo:
This dissertation comprises three chapters. The first chapter motivates the use of a novel data set combining survey and administrative sources for the study of internal labor migration. By following a sample of individuals from the American Community Survey (ACS) across their employment outcomes over time according to the Longitudinal Employer-Household Dynamics (LEHD) database, I construct a measure of geographic labor mobility that allows me to exploit information about individuals prior to their move. This enables me to explore aspects of the migration decision, such as homeownership and employment status, in ways that have not previously been possible. In the second chapter, I use this data set to test the theory that falling home prices affect a worker’s propensity to take a job in a different metropolitan area from where he is currently located. Employing a within-CBSA and time estimation that compares homeowners to renters in their propensities to relocate for jobs, I find that homeowners who have experienced declines in the nominal value of their homes are approximately 12% less likely than average to take a new job in a location outside of the metropolitan area where they currently reside. This evidence is consistent with the hypothesis that housing lock-in has contributed to the decline in labor mobility of homeowners during the recent housing bust. The third chapter focuses on a sample of unemployed workers in the same data set, in order to compare the unemployment durations of those who find subsequent employment by relocating to a new metropolitan area, versus those who find employment in their original location. Using an instrumental variables strategy to address the endogeneity of the migration decision, I find that out-migrating for a new job significantly reduces the time to re-employment. These results stand in contrast to OLS estimates, which suggest that those who move have longer unemployment durations. This implies that those who migrate for jobs in the data may be particularly disadvantaged in their ability to find employment, and thus have strong short-term incentives to relocate.
Resumo:
This dissertation focuses on gaining understanding of cell migration and collective behavior through a combination of experiment, analysis, and modeling techniques. Cell migration is a ubiquitous process that plays an important role during embryonic development and wound healing as well as in diseases like cancer, which is a particular focus of this work. As cancer cells become increasingly malignant, they acquire the ability to migrate away from the primary tumor and spread throughout the body to form metastatic tumors. During this process, changes in gene expression and the surrounding tumor environment can lead to changes in cell migration characteristics. In this thesis, I analyze how cells are guided by the texture of their environment and how cells cooperate with their neighbors to move collectively. The emergent properties of collectively moving groups are a particular focus of this work as collective cell dynamics are known to change in diseases such as cancer. The internal machinery for cell migration involves polymerization of the actin cytoskeleton to create protrusions that---in coordination with retraction of the rear of the cell---lead to cell motion. This actin machinery has been previously shown to respond to the topography of the surrounding surface, leading to guided migration of amoeboid cells. Here we show that epithelial cells on nanoscale ridge structures also show changes in the morphology of their cytoskeletons; actin is found to align with the ridge structures. The migration of the cells is also guided preferentially along the ridge length. These ridge structures are on length scales similar to those found in tumor microenvironments and as such provide a system for studying the response of the cells' internal migration machinery to physiologically relevant topographical cues. In addition to sensing surface topography, individual cells can also be influenced by the pushing and pulling of neighboring cells. The emergent properties of collectively migrating cells show interesting dynamics and are relevant for cancer progression, but have been less studied than the motion of individual cells. We use Particle Image Velocimetry (PIV) to extract the motion of a collectively migrating cell sheet from time lapse images. The resulting flow fields allow us to analyze collective behavior over multiple length and time scales. To analyze the connection between individual cell properties and collective migration behavior, we compare experimental flow fields with the migration of simulated cell groups. Our collective migration metrics allow for a quantitative comparison between experimental and simulated results. This comparison shows that tissue-scale decreases in collective behavior can result from changes in individual cell activity without the need to postulate the existence of subpopulations of leader cells or global gradients. In addition to tissue-scale trends in collective behavior, the migration of cell groups includes localized dynamic features such as cell rearrangements. An individual cell may smoothly follow the motion of its neighbors (affine motion) or move in a more individualistic manner (non-affine motion). By decomposing individual motion into both affine and non-affine components, we measure cell rearrangements within a collective sheet. Finally, finite-time Lyapunov exponent (FTLE) values capture the stretching of the flow field and reflect its chaotic character. Applying collective migration analysis techniques to experimental data on both malignant and non-malignant human breast epithelial cells reveals differences in collective behavior that are not found from analyzing migration speeds alone. Non-malignant cells show increased cooperative motion on long time scales whereas malignant cells remain uncooperative as time progresses. Combining multiple analysis techniques also shows that these two cell types differ in their response to a perturbation of cell-cell adhesion through the molecule E-cadherin. Non-malignant MCF10A cells use E-cadherin for short time coordination of collective motion, yet even with decreased E-cadherin expression, the cells remain coordinated over long time scales. In contrast, the migration behavior of malignant and invasive MCF10CA1a cells, which already shows decreased collective dynamics on both time scales, is insensitive to the change in E-cadherin expression.
Resumo:
This dissertation focuses on gaining understanding of cell migration and collective behavior through a combination of experiment, analysis, and modeling techniques. Cell migration is a ubiquitous process that plays an important role during embryonic development and wound healing as well as in diseases like cancer, which is a particular focus of this work. As cancer cells become increasingly malignant, they acquire the ability to migrate away from the primary tumor and spread throughout the body to form metastatic tumors. During this process, changes in gene expression and the surrounding tumor environment can lead to changes in cell migration characteristics. In this thesis, I analyze how cells are guided by the texture of their environment and how cells cooperate with their neighbors to move collectively. The emergent properties of collectively moving groups are a particular focus of this work as collective cell dynamics are known to change in diseases such as cancer. The internal machinery for cell migration involves polymerization of the actin cytoskeleton to create protrusions that---in coordination with retraction of the rear of the cell---lead to cell motion. This actin machinery has been previously shown to respond to the topography of the surrounding surface, leading to guided migration of amoeboid cells. Here we show that epithelial cells on nanoscale ridge structures also show changes in the morphology of their cytoskeletons; actin is found to align with the ridge structures. The migration of the cells is also guided preferentially along the ridge length. These ridge structures are on length scales similar to those found in tumor microenvironments and as such provide a system for studying the response of the cells' internal migration machinery to physiologically relevant topographical cues. In addition to sensing surface topography, individual cells can also be influenced by the pushing and pulling of neighboring cells. The emergent properties of collectively migrating cells show interesting dynamics and are relevant for cancer progression, but have been less studied than the motion of individual cells. We use Particle Image Velocimetry (PIV) to extract the motion of a collectively migrating cell sheet from time lapse images. The resulting flow fields allow us to analyze collective behavior over multiple length and time scales. To analyze the connection between individual cell properties and collective migration behavior, we compare experimental flow fields with the migration of simulated cell groups. Our collective migration metrics allow for a quantitative comparison between experimental and simulated results. This comparison shows that tissue-scale decreases in collective behavior can result from changes in individual cell activity without the need to postulate the existence of subpopulations of leader cells or global gradients. In addition to tissue-scale trends in collective behavior, the migration of cell groups includes localized dynamic features such as cell rearrangements. An individual cell may smoothly follow the motion of its neighbors (affine motion) or move in a more individualistic manner (non-affine motion). By decomposing individual motion into both affine and non-affine components, we measure cell rearrangements within a collective sheet. Finally, finite-time Lyapunov exponent (FTLE) values capture the stretching of the flow field and reflect its chaotic character. Applying collective migration analysis techniques to experimental data on both malignant and non-malignant human breast epithelial cells reveals differences in collective behavior that are not found from analyzing migration speeds alone. Non-malignant cells show increased cooperative motion on long time scales whereas malignant cells remain uncooperative as time progresses. Combining multiple analysis techniques also shows that these two cell types differ in their response to a perturbation of cell-cell adhesion through the molecule E-cadherin. Non-malignant MCF10A cells use E-cadherin for short time coordination of collective motion, yet even with decreased E-cadherin expression, the cells remain coordinated over long time scales. In contrast, the migration behavior of malignant and invasive MCF10CA1a cells, which already shows decreased collective dynamics on both time scales, is insensitive to the change in E-cadherin expression.