7 resultados para Interactive visualizations

em DRUM (Digital Repository at the University of Maryland)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitrate from agricultural runoff are a significant cause of algal blooms in estuarine ecosystems such as the Chesapeake Bay. These blooms block sunlight vital to submerged aquatic vegetation, leading to hypoxic areas. Natural and constructed wetlands have been shown to reduce the amount of nitrate flowing into adjacent bodies of water. We tested three wetland plant species native to Maryland, Typha latifolia (cattail), Panicum virgatum (switchgrass), and Schoenoplectus validus (soft-stem bulrush), in wetland microcosms to determine the effect of species combination and organic amendment on nitrate removal. In the first phase of our study, we found that microcosms containing sawdust exhibited significantly greater nitrate removal than microcosms amended with glucose or hay at a low nitrate loading rate. In the second phase of our study, we confirmed that combining these plants removed nitrate, although no one combination was significantly better. Furthermore, the above-ground biomass of microcosms containing switchgrass had a significantly greater percentage of carbon than microcosms without switchgrass, which can be studied for potential biofuel use. Based on our data, future environmental groups can make a more informed decision when choosing biofuel-capable plant species for artificial wetlands native to the Chesapeake Bay Watershed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Behavioral Parent Training (BPT) is a well-established therapy that reduces child externalized behaviors and parent stress. Although BPT was originally developed for parents of children with defiant behaviors, the program’s key concepts are relevant to parenting all children. Since parents might not fully utilize BPT due to cost and program location, we created an online game as a low-cost, easily accessible alternative or complement to BPT. We tested the game with nineteen undergraduate students at the University of Maryland. The experimental group completed pretest survey on core BPT knowledge, played the game, and completed a BPT posttest, while the control group completed a pretest and posttest survey over a three week period. Participants in the experimental group also completed a survey to indicate their satisfaction with the overall program. The experimental group demonstrated significantly higher levels of BPT knowledge than the control group and high levels of satisfaction. This suggests that an interactive, online BPT platform is an engaging and accessible way for parents to learn key concepts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This quantitative study examines the impact of teacher practices on student achievement in classrooms where the English is Fun Interactive Radio Instruction (IRI) programs were being used. A contemporary IRI design using a dual-audience approach, the English is Fun IRI programs delivered daily English language instruction to students in grades 1 and 2 in Delhi and Rajasthan through 120 30-minute programs via broadcast radio (the first audience) while modeling pedagogical techniques and behaviors for their teachers (the second audience). Few studies have examined how the dual-audience approach influences student learning. Using existing data from 32 teachers and 696 students, this study utilizes a multivariate multilevel model to examine the role of the primary expectations for teachers (e.g., setting up the IRI classroom, following instructions from the radio characters and ensuring students are participating) and the role of secondary expectations for teachers (e.g., modeling pedagogies and facilitating learning beyond the instructions) in promoting students’ learning in English listening skills, knowledge of vocabulary and use of sentences. The study finds that teacher practice on both sets of expectations mattered, but that practice in the secondary expectations mattered more. As expected, students made the smallest gains in the most difficult linguistic task (sentence use). The extent to which teachers satisfied the primary and secondary expectations was associated with gains in all three skills – confirming the relationship between students’ English proficiency and teacher practice in a dual-audience program. When it came to gains in students’ scores in sentence use, a teacher whose focus was greater on primary expectations had a negative effect on student performance in both states. In all, teacher practice clearly mattered but not in the same way for all three skills. An optimal scenario for teacher practice is presented in which gains in all three skills are maximized. These findings have important implications for the way the classroom teacher is cast in IRI programs that utilize a dual-audience approach and in the way IRI programs are contracted insofar as the role of the teacher in instruction is minimized and access is limited to instructional support from the IRI lessons alone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Presentation from the MARAC conference in Roanoke, VA on October 7–10, 2015. S7 - The Interactive Experience: Exploring Technologies for Creating Touchscreen Exhibits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Presentation from the MARAC conference in Roanoke, VA on October 7–10, 2015. S7 - The Interactive Experience: Exploring Technologies for Creating Touchscreen Exhibits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sequences of timestamped events are currently being generated across nearly every domain of data analytics, from e-commerce web logging to electronic health records used by doctors and medical researchers. Every day, this data type is reviewed by humans who apply statistical tests, hoping to learn everything they can about how these processes work, why they break, and how they can be improved upon. To further uncover how these processes work the way they do, researchers often compare two groups, or cohorts, of event sequences to find the differences and similarities between outcomes and processes. With temporal event sequence data, this task is complex because of the variety of ways single events and sequences of events can differ between the two cohorts of records: the structure of the event sequences (e.g., event order, co-occurring events, or frequencies of events), the attributes about the events and records (e.g., gender of a patient), or metrics about the timestamps themselves (e.g., duration of an event). Running statistical tests to cover all these cases and determining which results are significant becomes cumbersome. Current visual analytics tools for comparing groups of event sequences emphasize a purely statistical or purely visual approach for comparison. Visual analytics tools leverage humans' ability to easily see patterns and anomalies that they were not expecting, but is limited by uncertainty in findings. Statistical tools emphasize finding significant differences in the data, but often requires researchers have a concrete question and doesn't facilitate more general exploration of the data. Combining visual analytics tools with statistical methods leverages the benefits of both approaches for quicker and easier insight discovery. Integrating statistics into a visualization tool presents many challenges on the frontend (e.g., displaying the results of many different metrics concisely) and in the backend (e.g., scalability challenges with running various metrics on multi-dimensional data at once). I begin by exploring the problem of comparing cohorts of event sequences and understanding the questions that analysts commonly ask in this task. From there, I demonstrate that combining automated statistics with an interactive user interface amplifies the benefits of both types of tools, thereby enabling analysts to conduct quicker and easier data exploration, hypothesis generation, and insight discovery. The direct contributions of this dissertation are: (1) a taxonomy of metrics for comparing cohorts of temporal event sequences, (2) a statistical framework for exploratory data analysis with a method I refer to as high-volume hypothesis testing (HVHT), (3) a family of visualizations and guidelines for interaction techniques that are useful for understanding and parsing the results, and (4) a user study, five long-term case studies, and five short-term case studies which demonstrate the utility and impact of these methods in various domains: four in the medical domain, one in web log analysis, two in education, and one each in social networks, sports analytics, and security. My dissertation contributes an understanding of how cohorts of temporal event sequences are commonly compared and the difficulties associated with applying and parsing the results of these metrics. It also contributes a set of visualizations, algorithms, and design guidelines for balancing automated statistics with user-driven analysis to guide users to significant, distinguishing features between cohorts. This work opens avenues for future research in comparing two or more groups of temporal event sequences, opening traditional machine learning and data mining techniques to user interaction, and extending the principles found in this dissertation to data types beyond temporal event sequences.