4 resultados para Insect Repellents

em DRUM (Digital Repository at the University of Maryland)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microorganisms in the plant rhizosphere, the zone under the influence of roots, and phyllosphere, the aboveground plant habitat, exert a strong influence on plant growth, health, and protection. Tomatoes and cucumbers are important players in produce safety, and the microbial life on their surfaces may contribute to their fitness as hosts for foodborne pathogens such as Salmonella enterica and Listeria monocytogenes. External factors such as agricultural inputs and environmental conditions likely also play a major role. However, the relative contributions of the various factors at play concerning the plant surface microbiome remain obscure, although this knowledge could be applied to crop protection from plant and human pathogens. Recent advances in genomic technology have made investigations into the diversity and structure of microbial communities possible in many systems and at multiple scales. Using Illumina sequencing to profile particular regions of the 16S rRNA gene, this study investigates the influences of climate and crop management practices on the field-grown tomato and cucumber microbiome. The first research chapter (Chapter 3) involved application of 4 different soil amendments to a tomato field and profiling of harvest-time phyllosphere and rhizosphere microbial communities. Factors such as water activity, soil texture, and field location influenced microbial community structure more than soil amendment use, indicating that field conditions may exert more influence on the tomato microbiome than certain agricultural inputs. In Chapter 4, the impact of rain on tomato and cucumber-associated microbial community structures was evaluated. Shifts in bacterial community composition and structure were recorded immediately following rain events, an effect which was partially reversed after 4 days and was strongest on cucumber fruit surfaces. Chapter 5 focused on the contribution of insect visitors to the tomato microbiota, finding that insects introduced diverse bacterial taxa to the blossom and green tomato fruit microbiome. This study advances our understanding of the factors that influence the microbiomes of tomato and cucumber. Farms are complex environments, and untangling the interactions between farming practices, the environment, and microbial diversity will help us develop a comprehensive understanding of how microbial life, including foodborne pathogens, may be influenced by agricultural conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fungal fruit rots and insect pests are among the most important problems negatively affecting the yield and quality of mid-Atlantic wine. In pathogenicity trials of fungi recovered from diseased Chardonnay and Vidal blanc grapes, Alternaria alternata, Pestalotiopsis telopeae, and Aspergillus japonicus were found to be unreported fruit rot pathogens in the region. Additionally, P. telopeae and A. japonicus had comparable virulence to the region’s common fruit rot pathogens. Furthermore, a timed-exclusion field study was implemented to evaluate vineyard insect-fruit rot relationships. It was found that clusters exposed to early-season insect communities that included Paralobesia viteana had a significantly greater incidence of sour rot than clusters protected from insects all season. These results were contrary to the current assumption that fall insects are the primary drivers of sour rot in the region. This research provides diagnostic tools and information to develop management-strategies against fungal and insect pests for mid-Atlantic grape growers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Males of many insect species feed their partner during courtship and mating. Studies of male nutrient donation in various systems have established that nuptial feeding has evolved mostly through sexual selection. Although there is extensive diversity in form, the function of nuptial gifts is typically limited to either facilitating copulation or increasing ejaculate transfer, depending on the time at which the gift is consumed by females. Unlike other insects, the Hawaiian swordtail cricket Laupala (Gryllidae: Trigonidiinae) exhibits serial transfer of nuptial gifts. Males transfer multiple spermless 'micro' spermatophores over several hours before mating at the end of the day (i.e. before the transfer of a single sperm-containing 'macro' spermatophore). By experimental manipulation of male microspermatophore donation, I tested several hypotheses pertaining to the adaptive significance of nuptial gifts in this system. I found that microspermatophore transfer improves insemination, by causing the female reproductive tract to take in more sperm. This result reveals a previously undocumented function for premating nuptial gift donation among insects. Enhanced sperm transfer due to microspermatophore donation may represent male manipulation or an internal mechanism of post-copulatory choice by females. I also performed experimental manipulation of male photoperiod to investigate how time and gender influence nuptial gift production and mating behavior. I found that the timing of mating is limited in males but not females and that the time of pair formation has consequences for the degree of nuptial gift donation, which suggests that both mating timing and microspermatophore number is important for male reproductive success. Finally, I observed the mating behavior of several trigonidiine taxa for a comparative analysis of sexual behavior and found that other genera also utilize spermless microspermatophores, which suggests that microspermatophore donation may be a common nuptial gift strategy among swordtail crickets. The elaborate nuptial feeding behavior of Hawaiian swordtail crickets prior to mating represents a newly discovered strategy to increase male insemination success rather than mating success. Based on this unexpected result, it is worth exploring whether courtship behaviors in other cricket or insect mating systems have also evolved to increase sperm uptake.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Familial hypercholesterolemia (FH) is a genetic disorder characterized by abnormally high concentrations of low-density lipoprotein-cholesterol (LDLcholesterol) in the blood that can contribute to heart disease. FH can result from a defect in the gene for the LDL receptor (LDL-R). FH patients lacking functional LDL-R may benefit from viral-mediated transfer of a functional copy of the open reading frame (ORF) of the LDL-R. Since a recombinant adeno-associated virus (rAAV) is not immunogenic and can be mass-produced, it shows promise for gene therapy applications. AAV6 and AAV8 have been shown to specifically transduce hepatocytes in several species, which normally remove the majority of LDL-cholesterol from the blood via LDL-R-mediated endocytosis. Because of the potential of rAAV to treat FH by delivery of a correct LDL-R ORF to hepatocytes, the liver specificity of these two AAV serotypes was evaluated. Additionally, rabbits were chosen as the animal model for this study because a specific strain of rabbits, Watanabe heritable hyperlipidemic (WHHL), adequately mimics the pathology of FH in humans. Exposure of rabbit liver to rAAV with the marker LacZ and subsequent inspection of liver tissue showed that AAV8 transduced rabbit liver more efficiently than AAV6. To assess the feasibility of producing a rAAV capable of transferring the LDL-R ORF to rabbit hepatocytes in vivo, rAAV8-LDL-R was mass-produced by a baculovirus system in suspension grown insect cells.