7 resultados para Information Technologies Development
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Americans are accustomed to a wide range of data collection in their lives: census, polls, surveys, user registrations, and disclosure forms. When logging onto the Internet, users’ actions are being tracked everywhere: clicking, typing, tapping, swiping, searching, and placing orders. All of this data is stored to create data-driven profiles of each user. Social network sites, furthermore, set the voluntarily sharing of personal data as the default mode of engagement. But people’s time and energy devoted to creating this massive amount of data, on paper and online, are taken for granted. Few people would consider their time and energy spent on data production as labor. Even if some people do acknowledge their labor for data, they believe it is accessory to the activities at hand. In the face of pervasive data collection and the rising time spent on screens, why do people keep ignoring their labor for data? How has labor for data been become invisible, as something that is disregarded by many users? What does invisible labor for data imply for everyday cultural practices in the United States? Invisible Labor for Data addresses these questions. I argue that three intertwined forces contribute to framing data production as being void of labor: data production institutions throughout history, the Internet’s technological infrastructure (especially with the implementation of algorithms), and the multiplication of virtual spaces. There is a common tendency in the framework of human interactions with computers to deprive data and bodies of their materiality. My Introduction and Chapter 1 offer theoretical interventions by reinstating embodied materiality and redefining labor for data as an ongoing process. The middle Chapters present case studies explaining how labor for data is pushed to the margin of the narratives about data production. I focus on a nationwide debate in the 1960s on whether the U.S. should build a databank, contemporary Big Data practices in the data broker and the Internet industries, and the group of people who are hired to produce data for other people’s avatars in the virtual games. I conclude with a discussion on how the new development of crowdsourcing projects may usher in the new chapter in exploiting invisible and discounted labor for data.
Resumo:
In economics of information theory, credence products are those whose quality is difficult or impossible for consumers to assess, even after they have consumed the product (Darby & Karni, 1973). This dissertation is focused on the content, consumer perception, and power of online reviews for credence services. Economics of information theory has long assumed, without empirical confirmation, that consumers will discount the credibility of claims about credence quality attributes. The same theories predict that because credence services are by definition obscure to the consumer, reviews of credence services are incapable of signaling quality. Our research aims to question these assumptions. In the first essay we examine how the content and structure of online reviews of credence services systematically differ from the content and structure of reviews of experience services and how consumers judge these differences. We have found that online reviews of credence services have either less important or less credible content than reviews of experience services and that consumers do discount the credibility of credence claims. However, while consumers rationally discount the credibility of simple credence claims in a review, more complex argument structure and the inclusion of evidence attenuate this effect. In the second essay we ask, “Can online reviews predict the worst doctors?” We examine the power of online reviews to detect low quality, as measured by state medical board sanctions. We find that online reviews are somewhat predictive of a doctor’s suitability to practice medicine; however, not all the data are useful. Numerical or star ratings provide the strongest quality signal; user-submitted text provides some signal but is subsumed almost completely by ratings. Of the ratings variables in our dataset, we find that punctuality, rather than knowledge, is the strongest predictor of medical board sanctions. These results challenge the definition of credence products, which is a long-standing construct in economics of information theory. Our results also have implications for online review users, review platforms, and for the use of predictive modeling in the context of information systems research.
Resumo:
Peer-to-peer information sharing has fundamentally changed customer decision-making process. Recent developments in information technologies have enabled digital sharing platforms to influence various granular aspects of the information sharing process. Despite the growing importance of digital information sharing, little research has examined the optimal design choices for a platform seeking to maximize returns from information sharing. My dissertation seeks to fill this gap. Specifically, I study novel interventions that can be implemented by the platform at different stages of the information sharing. In collaboration with a leading for-profit platform and a non-profit platform, I conduct three large-scale field experiments to causally identify the impact of these interventions on customers’ sharing behaviors as well as the sharing outcomes. The first essay examines whether and how a firm can enhance social contagion by simply varying the message shared by customers with their friends. Using a large randomized field experiment, I find that i) adding only information about the sender’s purchase status increases the likelihood of recipients’ purchase; ii) adding only information about referral reward increases recipients’ follow-up referrals; and iii) adding information about both the sender’s purchase as well as the referral rewards increases neither the likelihood of purchase nor follow-up referrals. I then discuss the underlying mechanisms. The second essay studies whether and how a firm can design unconditional incentive to engage customers who already reveal willingness to share. I conduct a field experiment to examine the impact of incentive design on sender’s purchase as well as further referral behavior. I find evidence that incentive structure has a significant, but interestingly opposing, impact on both outcomes. The results also provide insights about senders’ motives in sharing. The third essay examines whether and how a non-profit platform can use mobile messaging to leverage recipients’ social ties to encourage blood donation. I design a large field experiment to causally identify the impact of different types of information and incentives on donor’s self-donation and group donation behavior. My results show that non-profits can stimulate group effect and increase blood donation, but only with group reward. Such group reward works by motivating a different donor population. In summary, the findings from the three studies will offer valuable insights for platforms and social enterprises on how to engineer digital platforms to create social contagion. The rich data from randomized experiments and complementary sources (archive and survey) also allows me to test the underlying mechanism at work. In this way, my dissertation provides both managerial implication and theoretical contribution to the phenomenon of peer-to-peer information sharing.
Resumo:
This document is the Online Supplement to ‘Myopic Allocation Policy with Asymptotically Optimal Sampling Rate,’ to be published in the IEEE Transactions of Automatic Control in 2017.
Resumo:
Prior research shows that electronic word of mouth (eWOM) wields considerable influence over consumer behavior. However, as the volume and variety of eWOM grows, firms are faced with challenges in analyzing and responding to this information. In this dissertation, I argue that to meet the new challenges and opportunities posed by the expansion of eWOM and to more accurately measure its impacts on firms and consumers, we need to revisit our methodologies for extracting insights from eWOM. This dissertation consists of three essays that further our understanding of the value of social media analytics, especially with respect to eWOM. In the first essay, I use machine learning techniques to extract semantic structure from online reviews. These semantic dimensions describe the experiences of consumers in the service industry more accurately than traditional numerical variables. To demonstrate the value of these dimensions, I show that they can be used to substantially improve the accuracy of econometric models of firm survival. In the second essay, I explore the effects on eWOM of online deals, such as those offered by Groupon, the value of which to both consumers and merchants is controversial. Through a combination of Bayesian econometric models and controlled lab experiments, I examine the conditions under which online deals affect online reviews and provide strategies to mitigate the potential negative eWOM effects resulting from online deals. In the third essay, I focus on how eWOM can be incorporated into efforts to reduce foodborne illness, a major public health concern. I demonstrate how machine learning techniques can be used to monitor hygiene in restaurants through crowd-sourced online reviews. I am able to identify instances of moral hazard within the hygiene inspection scheme used in New York City by leveraging a dictionary specifically crafted for this purpose. To the extent that online reviews provide some visibility into the hygiene practices of restaurants, I show how losses from information asymmetry may be partially mitigated in this context. Taken together, this dissertation contributes by revisiting and refining the use of eWOM in the service sector through a combination of machine learning and econometric methodologies.
Resumo:
I study how a larger party within a supply chain could use its superior knowledge about its partner, who is considered to be financially constrained, to help its partner gain access to cheap finance. In particular, I consider two scenarios: (i) Retailer intermediation in supplier finance and (ii) The Effectiveness of Supplier Buy Back Finance. In the fist chapter, I study how a large buyer could help small suppliers obtain financing for their operations. Especially in developing economies, traditional financing methods can be very costly or unavailable to such suppliers. In order to reduce channel costs, in recent years large buyers started to implement their own financing methods that intermediate between suppliers and financing institutions. In this paper, I analyze the role and efficiency of buyer intermediation in supplier financing. Building a game-theoretical model, I show that buyer intermediated financing can significantly improve supply chain performance. Using data from a large Chinese online retailer and through structural regression estimation based on the theoretical analysis, I demonstrate that buyer intermediation induces lower interest rates and wholesale prices, increases order quantities, and boosts supplier borrowing. The analysis also shows that the retailer systematically overestimates the consumer demand. Based on counterfactual analysis, I predict that the implementation of buyer intermediated financing for the online retailer in 2013 improved channel profits by 18.3%, yielding more than $68M projected savings. In the second chapter, I study a novel buy-back financing scheme employed by large manufacturers in some emerging markets. A large manufacturer can secure financing for its budget-constrained downstream partners by assuming a part of the risk for their inventory by committing to buy back some unsold units. Buy back commitment could help a small downstream party secure a bank loan and further induce a higher order quantity through better allocation of risk in the supply chain. However, such a commitment may undermine the supply chain performance as it imposes extra costs on the supplier incurred by the return of large or costly-to-handle items. I first theoretically analyze the buy-back financing contract employed by a leading Chinese automative manufacturer and some variants of this contracting scheme. In order to measure the effectiveness of buy-back financing contracts, I utilize contract and sales data from the company and structurally estimate the theoretical model. Through counterfactual analysis, I study the efficiency of various buy-back financing schemes and compare them to traditional financing methods. I find that buy-back contract agreements can improve channel efficiency significantly compared to simple contracts with no buy-back, whether the downstream retailer can secure financing on its own or not.
Resumo:
In this dissertation, we apply mathematical programming techniques (i.e., integer programming and polyhedral combinatorics) to develop exact approaches for influence maximization on social networks. We study four combinatorial optimization problems that deal with maximizing influence at minimum cost over a social network. To our knowl- edge, all previous work to date involving influence maximization problems has focused on heuristics and approximation. We start with the following viral marketing problem that has attracted a significant amount of interest from the computer science literature. Given a social network, find a target set of customers to seed with a product. Then, a cascade will be caused by these initial adopters and other people start to adopt this product due to the influence they re- ceive from earlier adopters. The idea is to find the minimum cost that results in the entire network adopting the product. We first study a problem called the Weighted Target Set Selection (WTSS) Prob- lem. In the WTSS problem, the diffusion can take place over as many time periods as needed and a free product is given out to the individuals in the target set. Restricting the number of time periods that the diffusion takes place over to be one, we obtain a problem called the Positive Influence Dominating Set (PIDS) problem. Next, incorporating partial incentives, we consider a problem called the Least Cost Influence Problem (LCIP). The fourth problem studied is the One Time Period Least Cost Influence Problem (1TPLCIP) which is identical to the LCIP except that we restrict the number of time periods that the diffusion takes place over to be one. We apply a common research paradigm to each of these four problems. First, we work on special graphs: trees and cycles. Based on the insights we obtain from special graphs, we develop efficient methods for general graphs. On trees, first, we propose a polynomial time algorithm. More importantly, we present a tight and compact extended formulation. We also project the extended formulation onto the space of the natural vari- ables that gives the polytope on trees. Next, building upon the result for trees---we derive the polytope on cycles for the WTSS problem; as well as a polynomial time algorithm on cycles. This leads to our contribution on general graphs. For the WTSS problem and the LCIP, using the observation that the influence propagation network must be a directed acyclic graph (DAG), the strong formulation for trees can be embedded into a formulation on general graphs. We use this to design and implement a branch-and-cut approach for the WTSS problem and the LCIP. In our computational study, we are able to obtain high quality solutions for random graph instances with up to 10,000 nodes and 20,000 edges (40,000 arcs) within a reasonable amount of time.