2 resultados para Immunofluorescene localization
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Simultaneous Localization and Mapping (SLAM) is a procedure used to determine the location of a mobile vehicle in an unknown environment, while constructing a map of the unknown environment at the same time. Mobile platforms, which make use of SLAM algorithms, have industrial applications in autonomous maintenance, such as the inspection of flaws and defects in oil pipelines and storage tanks. A typical SLAM consists of four main components, namely, experimental setup (data gathering), vehicle pose estimation, feature extraction, and filtering. Feature extraction is the process of realizing significant features from the unknown environment such as corners, edges, walls, and interior features. In this work, an original feature extraction algorithm specific to distance measurements obtained through SONAR sensor data is presented. This algorithm has been constructed by combining the SONAR Salient Feature Extraction Algorithm and the Triangulation Hough Based Fusion with point-in-polygon detection. The reconstructed maps obtained through simulations and experimental data with the fusion algorithm are compared to the maps obtained with existing feature extraction algorithms. Based on the results obtained, it is suggested that the proposed algorithm can be employed as an option for data obtained from SONAR sensors in environment, where other forms of sensing are not viable. The algorithm fusion for feature extraction requires the vehicle pose estimation as an input, which is obtained from a vehicle pose estimation model. For the vehicle pose estimation, the author uses sensor integration to estimate the pose of the mobile vehicle. Different combinations of these sensors are studied (e.g., encoder, gyroscope, or encoder and gyroscope). The different sensor fusion techniques for the pose estimation are experimentally studied and compared. The vehicle pose estimation model, which produces the least amount of error, is used to generate inputs for the feature extraction algorithm fusion. In the experimental studies, two different environmental configurations are used, one without interior features and another one with two interior features. Numerical and experimental findings are discussed. Finally, the SLAM algorithm is implemented along with the algorithms for feature extraction and vehicle pose estimation. Three different cases are experimentally studied, with the floor of the environment intentionally altered to induce slipping. Results obtained for implementations with and without SLAM are compared and discussed. The present work represents a step towards the realization of autonomous inspection platforms for performing concurrent localization and mapping in harsh environments.
Resumo:
Most cancer-related deaths are due to metastasis formation, the ability of cancer cells to break away from the primary tumor site, transmigrate through the endothelium, and form secondary tumors in distant areas. Many studies have identified links between the mechanical properties of the cellular microenvironment and the behavior of cancer cells. Cells may experience heterogeneous microenvironments of varying stiffness during tumor progression, transmigration, and invasion into the basement membrane. In addition to mechanical factors, the localization of RNAs to lamellipodial regions has been proposed to play an important part in metastasis. This dissertation provides a quantitative evaluation of the biophysical effects on cancer cell transmigration and RNA localization. In the first part of this dissertation, we sought to compare cancer cell and leukocyte transmigration and investigate the impact of matrix stiffness on transmigration process. We found that cancer cell transmigration includes an additional step, ‘incorporation’, into the endothelial cell (EC) monolayer. During this phase, cancer cells physically displace ECs and spread into the monolayer. Furthermore, the effects of subendothelial matrix stiffness and endothelial activation on cancer cell incorporation are cell-specific, a notable difference from the process by which leukocytes transmigrate. Collectively, our results provide mechanistic insights into tumor cell extravasation and demonstrate that incorporation into the endothelium is one of the earliest steps. In the next part of this work, we investigated how matrix stiffness impacts RNA localization and its relevance to cancer metastasis. In migrating cells, the tumor suppressor protein, adenomatous polyposis coli (APC) targets RNAs to cellular protrusions. We observed that increasing stiffness promotes the peripheral localization of these APC-dependent RNAs and that cellular contractility plays a role in regulating this pathway. We next investigated the mechanism underlying the effect of substrate stiffness and cellular contractility. We found that contractility drives localization of RNAs to protrusions through modulation of detyrosinated microtubules, a network of modified microtubules that associate with, and are required for localization of APC-dependent RNAs. These results raise the possibility that as the matrix environment becomes stiffer during tumor progression, it promotes the localization of RNAs and ultimately induces a metastatic phenotype.