2 resultados para Image acquisition and representation
em DRUM (Digital Repository at the University of Maryland)
Resumo:
The goal of image retrieval and matching is to find and locate object instances in images from a large-scale image database. While visual features are abundant, how to combine them to improve performance by individual features remains a challenging task. In this work, we focus on leveraging multiple features for accurate and efficient image retrieval and matching. We first propose two graph-based approaches to rerank initially retrieved images for generic image retrieval. In the graph, vertices are images while edges are similarities between image pairs. Our first approach employs a mixture Markov model based on a random walk model on multiple graphs to fuse graphs. We introduce a probabilistic model to compute the importance of each feature for graph fusion under a naive Bayesian formulation, which requires statistics of similarities from a manually labeled dataset containing irrelevant images. To reduce human labeling, we further propose a fully unsupervised reranking algorithm based on a submodular objective function that can be efficiently optimized by greedy algorithm. By maximizing an information gain term over the graph, our submodular function favors a subset of database images that are similar to query images and resemble each other. The function also exploits the rank relationships of images from multiple ranked lists obtained by different features. We then study a more well-defined application, person re-identification, where the database contains labeled images of human bodies captured by multiple cameras. Re-identifications from multiple cameras are regarded as related tasks to exploit shared information. We apply a novel multi-task learning algorithm using both low level features and attributes. A low rank attribute embedding is joint learned within the multi-task learning formulation to embed original binary attributes to a continuous attribute space, where incorrect and incomplete attributes are rectified and recovered. To locate objects in images, we design an object detector based on object proposals and deep convolutional neural networks (CNN) in view of the emergence of deep networks. We improve a Fast RCNN framework and investigate two new strategies to detect objects accurately and efficiently: scale-dependent pooling (SDP) and cascaded rejection classifiers (CRC). The SDP improves detection accuracy by exploiting appropriate convolutional features depending on the scale of input object proposals. The CRC effectively utilizes convolutional features and greatly eliminates negative proposals in a cascaded manner, while maintaining a high recall for true objects. The two strategies together improve the detection accuracy and reduce the computational cost.
Resumo:
The relevance of explicit instruction has been well documented in SLA research. Despite numerous positive findings, however, the issue continues to engage scholars worldwide. One issue that was largely neglected in previous empirical studies - and one that may be crucial for the effectiveness of explicit instruction - is the timing and integration of rules and practice. The present study investigated the extent to which grammar explanation (GE) before practice, grammar explanation during practice, and individual differences impact the acquisition of L2 declarative and procedural knowledge of two grammatical structures in Spanish. In this experiment, 128 English-speaking learners of Spanish were randomly assigned to four experimental treatments and completed comprehension-based task-essential practice for interpreting object-verb (OV) and ser/estar (SER) sentences in Spanish. Results confirmed the predicted importance of timing of GE: participants who received GE during practice were more likely to develop and retain their knowledge successfully. Results further revealed that the various combinations of rules and practice posed differential task demands on the learners and consequently drew on language aptitude and WM to a different extent. Since these correlations between individual differences and learning outcomes were the least observed in the conditions that received GE during practice, we argue that the suitable integration of rules and practice ameliorated task demands, reducing the burden on the learner, and accordingly mitigated the role of participants’ individual differences. Finally, some evidence also showed that the comprehension practice that participants received for the two structures was not sufficient for the formation of solid productive knowledge, but was more effective for the OV than for the SER construction.