2 resultados para Illinois Energy Education Development Program
em DRUM (Digital Repository at the University of Maryland)
Resumo:
In support of the achievement goal theory (AGT), empirical research has demonstrated psychosocial benefits of the mastery-oriented learning climate. In this study, we examined the effects of perceived coaching behaviors on various indicators of psychosocial well-being (competitive anxiety, self-esteem, perceived competence, enjoyment, and future intentions for participation), as mediated by perceptions of the coach-initiated motivational climate, achievement goal orientations and perceptions of sport-specific skills efficacy. Using a pre-post test design, 1,464 boys, ages 10-15 (M = 12.84 years, SD = 1.44), who participated in a series of 12 football skills clinics were surveyed from various locations across the United States. Using structural equation modeling (SEM) path analysis and hierarchical regression analysis, the cumulative direct and indirect effects of the perceived coaching behaviors on the psychosocial variables at post-test were parsed out to determine what types of coaching behaviors are more conducive to the positive psychosocial development of youth athletes. The study demonstrated that how coaching behaviors are perceived impacts the athletes’ perceptions of the motivational climate and achievement goal orientations, as well as self-efficacy beliefs. These effects in turn affect the athletes’ self-esteem, general competence, sport-specific competence, competitive anxiety, enjoyment, and intentions to remain involved in the sport. The findings also clarify how young boys internalize and interpret coaches’ messages through modification of achievement goal orientations and sport-specific efficacy beliefs.
Resumo:
Causal inference with a continuous treatment is a relatively under-explored problem. In this dissertation, we adopt the potential outcomes framework. Potential outcomes are responses that would be seen for a unit under all possible treatments. In an observational study where the treatment is continuous, the potential outcomes are an uncountably infinite set indexed by treatment dose. We parameterize this unobservable set as a linear combination of a finite number of basis functions whose coefficients vary across units. This leads to new techniques for estimating the population average dose-response function (ADRF). Some techniques require a model for the treatment assignment given covariates, some require a model for predicting the potential outcomes from covariates, and some require both. We develop these techniques using a framework of estimating functions, compare them to existing methods for continuous treatments, and simulate their performance in a population where the ADRF is linear and the models for the treatment and/or outcomes may be misspecified. We also extend the comparisons to a data set of lottery winners in Massachusetts. Next, we describe the methods and functions in the R package causaldrf using data from the National Medical Expenditure Survey (NMES) and Infant Health and Development Program (IHDP) as examples. Additionally, we analyze the National Growth and Health Study (NGHS) data set and deal with the issue of missing data. Lastly, we discuss future research goals and possible extensions.