2 resultados para IT function
em DRUM (Digital Repository at the University of Maryland)
Resumo:
The survival and descent of cells is universally dependent on maintaining their proteins in a properly folded condition. It is widely accepted that the information for the folding of the nascent polypeptide chain into a native protein is encrypted in the amino acid sequence, and the Nobel Laureate Christian Anfinsen was the first to demonstrate that a protein could spontaneously refold after complete unfolding. However, it became clear that the observed folding rates for many proteins were much slower than rates estimated in vivo. This led to the recognition of required protein-protein interactions that promote proper folding. A unique group of proteins, the molecular chaperones, are responsible for maintaining protein homeostasis during normal growth as well as stress conditions. Chaperonins (CPNs) are ubiquitous and essential chaperones. They form ATP-dependent, hollow complexes that encapsulate polypeptides in two back-to-back stacked multisubunit rings, facilitating protein folding through highly cooperative allosteric articulation. CPNs are usually classified into Group I and Group II. Here, I report the characterization of a novel CPN belonging to a third Group, recently discovered in bacteria. Group III CPNs have close phylogenetic association to the Group II CPNs found in Archaea and Eukarya, and may be a relic of the Last Common Ancestor of the CPN family. The gene encoding the Group III CPN from Carboxydothermus hydrogenoformans and Candidatus Desulforudis audaxviator was cloned in E. coli and overexpressed in order to both characterize the protein and to demonstrate its ability to function as an ATPase chaperone. The opening and closing cycle of the Chy chaperonin was examined via site-directed mutations affecting the ATP binding site at R155. To relate the mutational analysis to the structure of the CPN, the crystal structure of both the AMP-PNP (an ATP analogue) and ADP bound forms were obtained in collaboration with Sun-Shin Cha in Seoul, South Korea. The ADP and ATP binding site substitutions resulted in frozen forms of the structures in open and closed conformations. From this, mutants were designed to validate hypotheses regarding key ATP interacting sites as well as important stabilizing interactions, and to observe the physical properties of the resulting complexes by calorimetry.
Resumo:
Ethylene is an essential plant hormone involved in nearly all stages of plant growth and development. EIN2 (ETHYLENE INSENSITIVE2) is a master positive regulator in the ethylene signaling pathway, consisting of an N-terminal domain and a C-terminal domain. The EIN2 N-terminal domain localizes to the endoplasmic reticulum (ER) membrane and shows sequence similarity to Nramp metal ion transporters. The cytosolic C-terminal domain is unique to plants and signals downstream. There have been several major gaps in our knowledge of EIN2 function. It was unknown how the ethylene signal gets relayed from the known upstream component CTR1 (CONSTITUTIVE RESPONSE1) a Ser/Thr kinase at the ER, to EIN2. How the ethylene signal was transduced from EIN2 to the next downstream component transcription factor EIN3 (ETHYLENE INSENSITIVE3) in the nucleus was also unknown. The N-terminal domain of EIN2 shows homology to Nramp metal ion transporters and whether EIN2 can also function as a metal transporter has been a question plaguing the ethylene field for almost two decades. Here, EIN2 was found to interact with the CTR1 protein kinase, leading to the discovery that CTR1 phosphorylates the C-terminal domain of EIN2 in Arabidopsis thaliana. Using tags at the termini of EIN2, it was deduced that in the presence of ethylene, the EIN2 C-terminal domain is cleaved and translocates into the nucleus, where it could somehow activate downstream ethylene responses. The EIN2 C-terminal domain interacts with nuclear proteins, RTE3 and EER5, which are components of the TREX-2 mRNA export complex, although the role of these interactions remains unclear. The EIN2 N-terminal domain was found to be capable of divalent metal transport when expressed in E. coli and S. cerevisiae leading to the hypothesis that metal transport plays a role in ethylene signaling. This hypothesis was tested using a novel missense allele, ein2 G36E, substituting a highly conserved residue that is required for metal transport in Nramp proteins. This G36E substitution did not disrupt metal ion transport of EIN2, but the ethylene insensitive phenotype of this mutant indicates that the EIN2 N-terminal domain is important for positively regulating the C-terminal domain. The defect of the ein2 G36E mutant does not prevent proper expression or subcellular localization, but might affect protein modifications. The ein2 G36E allele is partially dominant, mostly likely displaying haploinsufficiency. Overexpression of the EIN2 N-terminal domain in the ein2 G36E mutant did not rescue ethylene insensitivity, suggesting the N-terminal domain functions in cis to regulate the C-terminal domain. These findings advance our knowledge of EIN2, which is critical to understanding ethylene signaling.