4 resultados para INTRACTABLE EPISTAXIS

em DRUM (Digital Repository at the University of Maryland)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-ranking Chinese military officials are often quoted in international media as stating that China cannot afford to lose even an inch of Chinese territory, as this territory has been passed down from Chinese ancestors. Such statements are not new in Chinese politics, but recently this narrative has made an important transition. While previously limited to disputes over land borders, such rhetoric is now routinely applied to disputes involving islands and maritime borders. China is increasingly oriented toward its maritime borders and seems unwilling to compromise on delimitation disputes, a transition mirrored by many states across the globe. In a similar vein, scholarship has found that territorial disputes are particularly intractable and volatile when compared with other types of disputes, and a large body of research has grappled with producing systematic knowledge of territorial conflict. Yet in this wide body of literature, an important question has remained largely unanswered - how do states determine which geographical areas will be included in their territorial and maritime claims? In other words, if nations are willing to fight and die for an inch of national territory, how do governments draw the boundaries of the nation? This dissertation uses in-depth case studies of some of the most prominent territorial and maritime disputes in East Asia to argue that domestic political processes play a dominant and previously under-explored role in both shaping claims and determining the nature of territorial and maritime disputes. China and Taiwan are particularly well suited for this type of investigation, as they are separate claimants in multiple disputes, yet they both draw upon the same historical record when establishing and justifying their claims. Leveraging fieldwork in Taiwan, China, and the US, this dissertation includes in-depth case studies of China’s and Taiwan’s respective claims in both the South China Sea and East China Sea disputes. Evidence from this dissertation indicates that officials in both China and Taiwan have struggled with how to reconcile history and international law when establishing their claims, and that this struggle has introduced ambiguity into China's and Taiwan's claims. Amid this process, domestic political dynamics have played a dominant role in shaping the options available and the potential for claims to change in the future. In Taiwan’s democratic system, where national identity is highly contested through party politics, opinions vary along a broad spectrum as to the proper borders of the nation, and there is considerable evidence that Taiwan’s claims may change in the near future. In contrast, within China’s single-party authoritarian political system, where nationalism is source of regime legitimacy, views on the proper interpretation of China’s boundaries do vary, but along a much more narrow range. In the dissertation’s final chapter, additional cases, such as South Korea’s position on Dokdo and Indonesia’s approach to the defense of Natuna are used as points of comparison to further clarify theoretical findings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The size of online image datasets is constantly increasing. Considering an image dataset with millions of images, image retrieval becomes a seemingly intractable problem for exhaustive similarity search algorithms. Hashing methods, which encodes high-dimensional descriptors into compact binary strings, have become very popular because of their high efficiency in search and storage capacity. In the first part, we propose a multimodal retrieval method based on latent feature models. The procedure consists of a nonparametric Bayesian framework for learning underlying semantically meaningful abstract features in a multimodal dataset, a probabilistic retrieval model that allows cross-modal queries and an extension model for relevance feedback. In the second part, we focus on supervised hashing with kernels. We describe a flexible hashing procedure that treats binary codes and pairwise semantic similarity as latent and observed variables, respectively, in a probabilistic model based on Gaussian processes for binary classification. We present a scalable inference algorithm with the sparse pseudo-input Gaussian process (SPGP) model and distributed computing. In the last part, we define an incremental hashing strategy for dynamic databases where new images are added to the databases frequently. The method is based on a two-stage classification framework using binary and multi-class SVMs. The proposed method also enforces balance in binary codes by an imbalance penalty to obtain higher quality binary codes. We learn hash functions by an efficient algorithm where the NP-hard problem of finding optimal binary codes is solved via cyclic coordinate descent and SVMs are trained in a parallelized incremental manner. For modifications like adding images from an unseen class, we propose an incremental procedure for effective and efficient updates to the previous hash functions. Experiments on three large-scale image datasets demonstrate that the incremental strategy is capable of efficiently updating hash functions to the same retrieval performance as hashing from scratch.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Image (Video) retrieval is an interesting problem of retrieving images (videos) similar to the query. Images (Videos) are represented in an input (feature) space and similar images (videos) are obtained by finding nearest neighbors in the input representation space. Numerous input representations both in real valued and binary space have been proposed for conducting faster retrieval. In this thesis, we present techniques that obtain improved input representations for retrieval in both supervised and unsupervised settings for images and videos. Supervised retrieval is a well known problem of retrieving same class images of the query. We address the practical aspects of achieving faster retrieval with binary codes as input representations for the supervised setting in the first part, where binary codes are used as addresses into hash tables. In practice, using binary codes as addresses does not guarantee fast retrieval, as similar images are not mapped to the same binary code (address). We address this problem by presenting an efficient supervised hashing (binary encoding) method that aims to explicitly map all the images of the same class ideally to a unique binary code. We refer to the binary codes of the images as `Semantic Binary Codes' and the unique code for all same class images as `Class Binary Code'. We also propose a new class­ based Hamming metric that dramatically reduces the retrieval times for larger databases, where only hamming distance is computed to the class binary codes. We also propose a Deep semantic binary code model, by replacing the output layer of a popular convolutional Neural Network (AlexNet) with the class binary codes and show that the hashing functions learned in this way outperforms the state­ of ­the art, and at the same time provide fast retrieval times. In the second part, we also address the problem of supervised retrieval by taking into account the relationship between classes. For a given query image, we want to retrieve images that preserve the relative order i.e. we want to retrieve all same class images first and then, the related classes images before different class images. We learn such relationship aware binary codes by minimizing the similarity between inner product of the binary codes and the similarity between the classes. We calculate the similarity between classes using output embedding vectors, which are vector representations of classes. Our method deviates from the other supervised binary encoding schemes as it is the first to use output embeddings for learning hashing functions. We also introduce new performance metrics that take into account the related class retrieval results and show significant gains over the state­ of­ the art. High Dimensional descriptors like Fisher Vectors or Vector of Locally Aggregated Descriptors have shown to improve the performance of many computer vision applications including retrieval. In the third part, we will discuss an unsupervised technique for compressing high dimensional vectors into high dimensional binary codes, to reduce storage complexity. In this approach, we deviate from adopting traditional hyperplane hashing functions and instead learn hyperspherical hashing functions. The proposed method overcomes the computational challenges of directly applying the spherical hashing algorithm that is intractable for compressing high dimensional vectors. A practical hierarchical model that utilizes divide and conquer techniques using the Random Select and Adjust (RSA) procedure to compress such high dimensional vectors is presented. We show that our proposed high dimensional binary codes outperform the binary codes obtained using traditional hyperplane methods for higher compression ratios. In the last part of the thesis, we propose a retrieval based solution to the Zero shot event classification problem - a setting where no training videos are available for the event. To do this, we learn a generic set of concept detectors and represent both videos and query events in the concept space. We then compute similarity between the query event and the video in the concept space and videos similar to the query event are classified as the videos belonging to the event. We show that we significantly boost the performance using concept features from other modalities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

While fault-tolerant quantum computation might still be years away, analog quantum simulators offer a way to leverage current quantum technologies to study classically intractable quantum systems. Cutting edge quantum simulators such as those utilizing ultracold atoms are beginning to study physics which surpass what is classically tractable. As the system sizes of these quantum simulators increase, there are also concurrent gains in the complexity and types of Hamiltonians which can be simulated. In this work, I describe advances toward the realization of an adaptable, tunable quantum simulator capable of surpassing classical computation. We simulate long-ranged Ising and XY spin models which can have global arbitrary transverse and longitudinal fields in addition to individual transverse fields using a linear chain of up to 24 Yb+ 171 ions confined in a linear rf Paul trap. Each qubit is encoded in the ground state hyperfine levels of an ion. Spin-spin interactions are engineered by the application of spin-dependent forces from laser fields, coupling spin to motion. Each spin can be read independently using state-dependent fluorescence. The results here add yet more tools to an ever growing quantum simulation toolbox. One of many challenges has been the coherent manipulation of individual qubits. By using a surprisingly large fourth-order Stark shifts in a clock-state qubit, we demonstrate an ability to individually manipulate spins and apply independent Hamiltonian terms, greatly increasing the range of quantum simulations which can be implemented. As quantum systems grow beyond the capability of classical numerics, a constant question is how to verify a quantum simulation. Here, I present measurements which may provide useful metrics for large system sizes and demonstrate them in a system of up to 24 ions during a classically intractable simulation. The observed values are consistent with extremely large entangled states, as much as ~95% of the system entangled. Finally, we use many of these techniques in order to generate a spin Hamiltonian which fails to thermalize during experimental time scales due to a meta-stable state which is often called prethermal. The observed prethermal state is a new form of prethermalization which arises due to long-range interactions and open boundary conditions, even in the thermodynamic limit. This prethermalization is observed in a system of up to 22 spins. We expect that system sizes can be extended up to 30 spins with only minor upgrades to the current apparatus. These results emphasize that as the technology improves, the techniques and tools developed here can potentially be used to perform simulations which will surpass the capability of even the most sophisticated classical techniques, enabling the study of a whole new regime of quantum many-body physics.