2 resultados para IN-VITRO ORGANOGENESIS
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Chronic diabetic ulcers affect approximately 15% of patients with diabetes worldwide. Currently, applied electric fields are being investigated as a reliable and cost-effective treatment. This in vitro study aimed to determine the effects of a constant and spatially variable electric field on three factors: endothelial cell migration, proliferation, and angiogenic gene expression. Results for a constant electric field of 0.01 V demonstrated that migration at short time points increased 20-fold and proliferation at long time points increased by a factor of 1.40. Results for a spatially variable electric field did not increase directional migration, but increased proliferation by a factor of 1.39 and by a factor of 1.55 after application of 1.00 V and 0.01 V, respectively. Both constant and spatially variable applied fields increased angiogenic gene expression. Future research that explores a narrower range of intensity levels may more clearly identify the optimal design specifications of a spatially variable electric field.
Resumo:
In 2014 alone, over 12,000 women are expected to be diagnosed with cervical cancer. Of these women who are diagnosed, about 3,909 will result in death. Despite developments in prevention methods, cervical cancer remains a major health concern for women. Growing evidence suggests that Salvianolic acid B (Sal B), a major component of the Chinese herb Danshen, may inhibit cancer cell growth and help fight against cervical cancer. This study characterizes the potential of Sal B as a cervical cancer drug through in vitro testing on HeLa cells. We hypothesized that application of Sal B to HeLa cells will result in decreased cell viability and increased apoptosis in a dose dependent manner. HeLa cells were treated with varying concentrations of Sal B: 25µM, 50µM, 100µM, and 200µM. Cell viability was determined through colony formation assay, cell death ELISA, and nuclear morphology. An inhibitor study was also conducted for further apoptosis pathway analysis. Colony formation assay demonstrated a significant decrease in cell viability with increasing concentrations of Sal B with 75% viability at 50µM down to 0% viability at 200µM. Cell death ELISA and the analysis of nuclear morphology via Hoechst staining reported significant levels of apoptosis at concentrations equal to 50µM and greater. Furthermore, experiments using caspase inhibitors indicated that Sal B’s apoptotic effects are caspase-8 dependent. In conclusion, our results demonstrate that Sal B inhibits cancer cell growth by a mechanism that involves apoptosis induction through the extrinsic pathway.