5 resultados para ICARUS search and rescue case
em DRUM (Digital Repository at the University of Maryland)
Resumo:
The last two decades have seen many exciting examples of tiny robots from a few cm3 to less than one cm3. Although individually limited, a large group of these robots has the potential to work cooperatively and accomplish complex tasks. Two examples from nature that exhibit this type of cooperation are ant and bee colonies. They have the potential to assist in applications like search and rescue, military scouting, infrastructure and equipment monitoring, nano-manufacture, and possibly medicine. Most of these applications require the high level of autonomy that has been demonstrated by large robotic platforms, such as the iRobot and Honda ASIMO. However, when robot size shrinks down, current approaches to achieve the necessary functions are no longer valid. This work focused on challenges associated with the electronics and fabrication. We addressed three major technical hurdles inherent to current approaches: 1) difficulty of compact integration; 2) need for real-time and power-efficient computations; 3) unavailability of commercial tiny actuators and motion mechanisms. The aim of this work was to provide enabling hardware technologies to achieve autonomy in tiny robots. We proposed a decentralized application-specific integrated circuit (ASIC) where each component is responsible for its own operation and autonomy to the greatest extent possible. The ASIC consists of electronics modules for the fundamental functions required to fulfill the desired autonomy: actuation, control, power supply, and sensing. The actuators and mechanisms could potentially be post-fabricated on the ASIC directly. This design makes for a modular architecture. The following components were shown to work in physical implementations or simulations: 1) a tunable motion controller for ultralow frequency actuation; 2) a nonvolatile memory and programming circuit to achieve automatic and one-time programming; 3) a high-voltage circuit with the highest reported breakdown voltage in standard 0.5 μm CMOS; 4) thermal actuators fabricated using CMOS compatible process; 5) a low-power mixed-signal computational architecture for robotic dynamics simulator; 6) a frequency-boost technique to achieve low jitter in ring oscillators. These contributions will be generally enabling for other systems with strict size and power constraints such as wireless sensor nodes.
Resumo:
Cancer and cardio-vascular diseases are the leading causes of death world-wide. Caused by systemic genetic and molecular disruptions in cells, these disorders are the manifestation of profound disturbance of normal cellular homeostasis. People suffering or at high risk for these disorders need early diagnosis and personalized therapeutic intervention. Successful implementation of such clinical measures can significantly improve global health. However, development of effective therapies is hindered by the challenges in identifying genetic and molecular determinants of the onset of diseases; and in cases where therapies already exist, the main challenge is to identify molecular determinants that drive resistance to the therapies. Due to the progress in sequencing technologies, the access to a large genome-wide biological data is now extended far beyond few experimental labs to the global research community. The unprecedented availability of the data has revolutionized the capabilities of computational researchers, enabling them to collaboratively address the long standing problems from many different perspectives. Likewise, this thesis tackles the two main public health related challenges using data driven approaches. Numerous association studies have been proposed to identify genomic variants that determine disease. However, their clinical utility remains limited due to their inability to distinguish causal variants from associated variants. In the presented thesis, we first propose a simple scheme that improves association studies in supervised fashion and has shown its applicability in identifying genomic regulatory variants associated with hypertension. Next, we propose a coupled Bayesian regression approach -- eQTeL, which leverages epigenetic data to estimate regulatory and gene interaction potential, and identifies combinations of regulatory genomic variants that explain the gene expression variance. On human heart data, eQTeL not only explains a significantly greater proportion of expression variance in samples, but also predicts gene expression more accurately than other methods. We demonstrate that eQTeL accurately detects causal regulatory SNPs by simulation, particularly those with small effect sizes. Using various functional data, we show that SNPs detected by eQTeL are enriched for allele-specific protein binding and histone modifications, which potentially disrupt binding of core cardiac transcription factors and are spatially proximal to their target. eQTeL SNPs capture a substantial proportion of genetic determinants of expression variance and we estimate that 58% of these SNPs are putatively causal. The challenge of identifying molecular determinants of cancer resistance so far could only be dealt with labor intensive and costly experimental studies, and in case of experimental drugs such studies are infeasible. Here we take a fundamentally different data driven approach to understand the evolving landscape of emerging resistance. We introduce a novel class of genetic interactions termed synthetic rescues (SR) in cancer, which denotes a functional interaction between two genes where a change in the activity of one vulnerable gene (which may be a target of a cancer drug) is lethal, but subsequently altered activity of its partner rescuer gene restores cell viability. Next we describe a comprehensive computational framework --termed INCISOR-- for identifying SR underlying cancer resistance. Applying INCISOR to mine The Cancer Genome Atlas (TCGA), a large collection of cancer patient data, we identified the first pan-cancer SR networks, composed of interactions common to many cancer types. We experimentally test and validate a subset of these interactions involving the master regulator gene mTOR. We find that rescuer genes become increasingly activated as breast cancer progresses, testifying to pervasive ongoing rescue processes. We show that SRs can be utilized to successfully predict patients' survival and response to the majority of current cancer drugs, and importantly, for predicting the emergence of drug resistance from the initial tumor biopsy. Our analysis suggests a potential new strategy for enhancing the effectiveness of existing cancer therapies by targeting their rescuer genes to counteract resistance. The thesis provides statistical frameworks that can harness ever increasing high throughput genomic data to address challenges in determining the molecular underpinnings of hypertension, cardiovascular disease and cancer resistance. We discover novel molecular mechanistic insights that will advance the progress in early disease prevention and personalized therapeutics. Our analyses sheds light on the fundamental biological understanding of gene regulation and interaction, and opens up exciting avenues of translational applications in risk prediction and therapeutics.
Resumo:
Placement of students with disabilities in private special-education schools remains costly and controversial. This is particularly concerning, given the lack of research on the characteristics and quality of these restrictive settings. The purpose of this study was to identify the academic and vocational course offerings and behavioral supports provided in private special-education schools the serve high school students with emotional disabilities (ED). Second, the research examined the perceptions of the quality of services in these setting from the perspectives of public school case managers. Using a mixed-method design to collect data, 9 administrative heads of private special-education schools were surveyed, and 7 public school case managers were interviewed. Results indicated that (a) private special-education schools offer the basic academic core courses needed to meet graduation requirements, (b) vocational options for students enrolled in these schools are quite limited, (c) these schools provide a variety of behavioral interventions and supports, and (d) case managers are concerned with the lack of academic rigor and inconsistent programming at these schools but applauded the notion that students with ED are exiting with a high school diploma. Findings from this study may have policy implications for improving and developing programming options for high school students with ED.
Resumo:
I investigate the effects of information frictions in price setting decisions. I show that firms' output prices and wages are less sensitive to aggregate economic conditions when firms and workers cannot perfectly understand (or know) the aggregate state of the economy. Prices and wages respond with a lag to aggregate innovations because agents learn slowly about those changes, and this delayed adjustment in prices makes output and unemployment more sensitive to aggregate shocks. In the first chapter of this dissertation, I show that workers' noisy information about the state of the economy help us to explain why real wages are sluggish. In the context of a search and matching model, wages do not immediately respond to a positive aggregate shock because workers do not (yet) have enough information to demand higher wages. This increases firms' incentives to post more vacancies, and it makes unemployment volatile and sensitive to aggregate shocks. This mechanism is robust to two major criticisms of existing theories of sluggish wages and volatile unemployment: the flexibility of wages for new hires and the cyclicality of the opportunity cost of employment. Calibrated to U.S. data, the model explains 60% of the overall unemployment volatility. Consistent with empirical evidence, the response of unemployment to TFP shocks predicted by my model is large, hump-shaped, and peaks one year after the TFP shock, while the response of the aggregate wage is weak and delayed, peaking after two years. In the second chapter of this dissertation, I study the role of information frictions and inventories in firms' price setting decisions in the context of a monetary model. In this model, intermediate goods firms accumulate output inventories, observe aggregate variables with one period lag, and observe their nominal input prices and demand at all times. Firms face idiosyncratic shocks and cannot perfectly infer the state of nature. After a contractionary nominal shock, nominal input prices go down, and firms accumulate inventories because they perceive some positive probability that the nominal price decline is due to a good productivity shock. This prevents firms' prices from decreasing and makes current profits, households' income, and aggregate demand go down. According to my model simulations, a 1% decrease in the money growth rate causes output to decline 0.17% in the first quarter and 0.38% in the second followed by a slow recovery to the steady state. Contractionary nominal shocks also have significant effects on total investment, which remains 1% below the steady state for the first 6 quarters.
Resumo:
The size of online image datasets is constantly increasing. Considering an image dataset with millions of images, image retrieval becomes a seemingly intractable problem for exhaustive similarity search algorithms. Hashing methods, which encodes high-dimensional descriptors into compact binary strings, have become very popular because of their high efficiency in search and storage capacity. In the first part, we propose a multimodal retrieval method based on latent feature models. The procedure consists of a nonparametric Bayesian framework for learning underlying semantically meaningful abstract features in a multimodal dataset, a probabilistic retrieval model that allows cross-modal queries and an extension model for relevance feedback. In the second part, we focus on supervised hashing with kernels. We describe a flexible hashing procedure that treats binary codes and pairwise semantic similarity as latent and observed variables, respectively, in a probabilistic model based on Gaussian processes for binary classification. We present a scalable inference algorithm with the sparse pseudo-input Gaussian process (SPGP) model and distributed computing. In the last part, we define an incremental hashing strategy for dynamic databases where new images are added to the databases frequently. The method is based on a two-stage classification framework using binary and multi-class SVMs. The proposed method also enforces balance in binary codes by an imbalance penalty to obtain higher quality binary codes. We learn hash functions by an efficient algorithm where the NP-hard problem of finding optimal binary codes is solved via cyclic coordinate descent and SVMs are trained in a parallelized incremental manner. For modifications like adding images from an unseen class, we propose an incremental procedure for effective and efficient updates to the previous hash functions. Experiments on three large-scale image datasets demonstrate that the incremental strategy is capable of efficiently updating hash functions to the same retrieval performance as hashing from scratch.