2 resultados para Hybrid heuristic algorithm

em DRUM (Digital Repository at the University of Maryland)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Resource allocation decisions are made to serve the current emergency without knowing which future emergency will be occurring. Different ordered combinations of emergencies result in different performance outcomes. Even though future decisions can be anticipated with scenarios, previous models follow an assumption that events over a time interval are independent. This dissertation follows an assumption that events are interdependent, because speed reduction and rubbernecking due to an initial incident provoke secondary incidents. The misconception that secondary incidents are not common has resulted in overlooking a look-ahead concept. This dissertation is a pioneer in relaxing the structural assumptions of independency during the assignment of emergency vehicles. When an emergency is detected and a request arrives, an appropriate emergency vehicle is immediately dispatched. We provide tools for quantifying impacts based on fundamentals of incident occurrences through identification, prediction, and interpretation of secondary incidents. A proposed online dispatching model minimizes the cost of moving the next emergency unit, while making the response as close to optimal as possible. Using the look-ahead concept, the online model flexibly re-computes the solution, basing future decisions on present requests. We introduce various online dispatching strategies with visualization of the algorithms, and provide insights on their differences in behavior and solution quality. The experimental evidence indicates that the algorithm works well in practice. After having served a designated request, the available and/or remaining vehicles are relocated to a new base for the next emergency. System costs will be excessive if delay regarding dispatching decisions is ignored when relocating response units. This dissertation presents an integrated method with a principle of beginning with a location phase to manage initial incidents and progressing through a dispatching phase to manage the stochastic occurrence of next incidents. Previous studies used the frequency of independent incidents and ignored scenarios in which two incidents occurred within proximal regions and intervals. The proposed analytical model relaxes the structural assumptions of Poisson process (independent increments) and incorporates evolution of primary and secondary incident probabilities over time. The mathematical model overcomes several limiting assumptions of the previous models, such as no waiting-time, returning rule to original depot, and fixed depot. The temporal locations flexible with look-ahead are compared with current practice that locates units in depots based on Poisson theory. A linearization of the formulation is presented and an efficient heuristic algorithm is implemented to deal with a large-scale problem in real-time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the increasing complexity of today's software, the software development process is becoming highly time and resource consuming. The increasing number of software configurations, input parameters, usage scenarios, supporting platforms, external dependencies, and versions plays an important role in expanding the costs of maintaining and repairing unforeseeable software faults. To repair software faults, developers spend considerable time in identifying the scenarios leading to those faults and root-causing the problems. While software debugging remains largely manual, it is not the case with software testing and verification. The goal of this research is to improve the software development process in general, and software debugging process in particular, by devising techniques and methods for automated software debugging, which leverage the advances in automatic test case generation and replay. In this research, novel algorithms are devised to discover faulty execution paths in programs by utilizing already existing software test cases, which can be either automatically or manually generated. The execution traces, or alternatively, the sequence covers of the failing test cases are extracted. Afterwards, commonalities between these test case sequence covers are extracted, processed, analyzed, and then presented to the developers in the form of subsequences that may be causing the fault. The hypothesis is that code sequences that are shared between a number of faulty test cases for the same reason resemble the faulty execution path, and hence, the search space for the faulty execution path can be narrowed down by using a large number of test cases. To achieve this goal, an efficient algorithm is implemented for finding common subsequences among a set of code sequence covers. Optimization techniques are devised to generate shorter and more logical sequence covers, and to select subsequences with high likelihood of containing the root cause among the set of all possible common subsequences. A hybrid static/dynamic analysis approach is designed to trace back the common subsequences from the end to the root cause. A debugging tool is created to enable developers to use the approach, and integrate it with an existing Integrated Development Environment. The tool is also integrated with the environment's program editors so that developers can benefit from both the tool suggestions, and their source code counterparts. Finally, a comparison between the developed approach and the state-of-the-art techniques shows that developers need only to inspect a small number of lines in order to find the root cause of the fault. Furthermore, experimental evaluation shows that the algorithm optimizations lead to better results in terms of both the algorithm running time and the output subsequence length.