6 resultados para Harmonic and anharmonic oscillators

em DRUM (Digital Repository at the University of Maryland)


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The graph Laplacian operator is widely studied in spectral graph theory largely due to its importance in modern data analysis. Recently, the Fourier transform and other time-frequency operators have been defined on graphs using Laplacian eigenvalues and eigenvectors. We extend these results and prove that the translation operator to the i’th node is invertible if and only if all eigenvectors are nonzero on the i’th node. Because of this dependency on the support of eigenvectors we study the characteristic set of Laplacian eigenvectors. We prove that the Fiedler vector of a planar graph cannot vanish on large neighborhoods and then explicitly construct a family of non-planar graphs that do exhibit this property. We then prove original results in modern analysis on graphs. We extend results on spectral graph wavelets to create vertex-dyanamic spectral graph wavelets whose support depends on both scale and translation parameters. We prove that Spielman’s Twice-Ramanujan graph sparsifying algorithm cannot outperform his conjectured optimal sparsification constant. Finally, we present numerical results on graph conditioning, in which edges of a graph are rescaled to best approximate the complete graph and reduce average commute time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

French Impressionism is a term which is often used in discussing music originating in France towards the end of the nineteenth century. The term Spanish Impressionism could also be used when discussing Spanish music written by the Spanish composers who studied and worked in Paris at the same time as their French counterparts. After all, Spanish music written during this time exhibits many of the same characteristics and aesthetics as French music of the same era. This dissertation will focus on the French and Spanish composers writing during that exciting time. Musical impressionism emphasizes harmonic effects and rhythmic fluidity in the pursuit of evocative moods, sound pictures of nature or places over the formalism of structure and thematic concerns. The music of this time is highly virtuosic as well as musically demanding, since many of the composers were brilliant pianists. My three dissertation recitals concentrated on works which exhibited the many facets of impressionism as well as the technical and musical challenges. The repertoire included selections by Spanish composers Manuel de Falla, Isaac Albéniz, Enrique Granados, Joaquín Turina, and Joaquín Rodrigo and French composers Claude Debussy and Maurice Ravel. The recitals were on April 30, 2013, February 23, 2014 and October 11, 2015. They included solo piano works by Granados and Albéniz, vocal works by Debussy, Ravel, de Falla, Turina and Rodrigo, piano trios by Granados and Turina, instrumental duos by Debussy, Ravel and de Falla, and a two-piano work of Debussy transcribed by Ravel. All three recitals were held in Gildenhorn Recital Hall at the University of Maryland and copies of this dissertation and recordings of each recital may be found through the Digital Repository at the University of Maryland (DRUM).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MOVE is a composition for string quartet, piano, percussion and electronics of approximately 15-16 minutes duration in three movements. The work incorporates electronic samples either synthesized electronically by the composer or recorded from acoustic instruments. The work aims to use electronic sounds as an expansion of the tonal palette of the chamber group (rather like an extended percussion setup) as opposed to a dominating sonic feature of the music. This is done by limiting the use of electronics to specific sections of the work, and by prioritizing blend and sonic coherence in the synthesized samples. The work uses fixed electronics in such a way that allows for tempo variations in the music. Generally, a difficulty arises in that fixed “tape” parts don’t allow tempo variations; while truly “live” software algorithms sacrifice rhythmic accuracy. Sample pads, such as the Roland SPD-SX, provide an elegant solution. The latency of such a device is close enough to zero that individual samples can be triggered in real time at a range of tempi. The percussion setup in this work (vibraphone and sample pad) allows one player to cover both parts, eliminating the need for an external musician to trigger the electronics. Compositionally, momentum is used as a constructing principle. The first movement makes prominent use of ostinato and shifting meter. The second is a set of variations on a repeated harmonic pattern, with a polymetric middle section. The third is a type of passacaglia, wherein the bassline is not introduced right away, but becomes more significant later in the movement. Given the importance of visual presentation in the Internet age, the final goal of the project was to shoot HD video of a studio performance of the work for publication online. The composer recorded audio and video in two separate sessions and edited the production using Logic X and Adobe Premiere Pro. The final video presentation can be seen at geoffsheil.com/move.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A methodology has been developed and presented to enable the use of small to medium scale acoustic hover facilities for the quantitative measurement of rotor impulsive noise. The methodology was applied to the University of Maryland Acoustic Chamber resulting in accurate measurements of High Speed Impulsive (HSI) noise for rotors running at tip Mach numbers between 0.65 and 0.85 – with accuracy increasing as the tip Mach number was increased. Several factors contributed to the success of this methodology including: • High Speed Impulsive (HSI) noise is characterized by very distinct pulses radiated from the rotor. The pulses radiate high frequency energy – but the energy is contained in short duration time pulses. • The first reflections from these pulses can be tracked (using ray theory) and, through adjustment of the microphone position and suitably applied acoustic treatment at the reflected surface, reduced to small levels. A computer code was developed that automates this process. The code also tracks first bounce reflection timing, making it possible to position the first bounce reflections outside of a measurement window. • Using a rotor with a small number of blades (preferably one) reduces the number of interfering first bounce reflections and generally improves the measured signal fidelity. The methodology will help the gathering of quantitative hovering rotor noise data in less than optimal acoustic facilities and thus enable basic rotorcraft research and rotor blade acoustic design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of isothermal aging on the harmonic vibration durability of Sn3.0Ag0.5Cu solder interconnects is examined. Printed wiring assemblies with daisy-chained leadless chip resistors (LCRs) are aged at 125°C for 0, 100, and 500 hours. These assemblies are instrumented with accelerometers and strain gages to maintain the same harmonic vibration profile in-test, and to characterize PWB behavior. The tested assemblies are excited at their first natural frequencies until LCRs show a resistance increase of 20%. Dynamic finite element models are employed to generate strain transfer functions, which relate board strain levels observed in-test to respective solder strain levels. The transfer functions are based on locally averaged values of strains in critical regions of the solder and in appropriate regions of the PWB. The vibration test data and the solder strains from FEA are used to estimate lower-bound material fatigue curves for SAC305 solder materials, as a function of isothermal pre-aging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a positive, accurate moment closure for linear kinetic transport equations based on a filtered spherical harmonic (FP_N) expansion in the angular variable. The FP_N moment equations are accurate approximations to linear kinetic equations, but they are known to suffer from the occurrence of unphysical, negative particle concentrations. The new positive filtered P_N (FP_N+) closure is developed to address this issue. The FP_N+ closure approximates the kinetic distribution by a spherical harmonic expansion that is non-negative on a finite, predetermined set of quadrature points. With an appropriate numerical PDE solver, the FP_N+ closure generates particle concentrations that are guaranteed to be non-negative. Under an additional, mild regularity assumption, we prove that as the moment order tends to infinity, the FP_N+ approximation converges, in the L2 sense, at the same rate as the FP_N approximation; numerical tests suggest that this assumption may not be necessary. By numerical experiments on the challenging line source benchmark problem, we confirm that the FP_N+ method indeed produces accurate and non-negative solutions. To apply the FP_N+ closure on problems at large temporal-spatial scales, we develop a positive asymptotic preserving (AP) numerical PDE solver. We prove that the propose AP scheme maintains stability and accuracy with standard mesh sizes at large temporal-spatial scales, while, for generic numerical schemes, excessive refinements on temporal-spatial meshes are required. We also show that the proposed scheme preserves positivity of the particle concentration, under some time step restriction. Numerical results confirm that the proposed AP scheme is capable for solving linear transport equations at large temporal-spatial scales, for which a generic scheme could fail. Constrained optimization problems are involved in the formulation of the FP_N+ closure to enforce non-negativity of the FP_N+ approximation on the set of quadrature points. These optimization problems can be written as strictly convex quadratic programs (CQPs) with a large number of inequality constraints. To efficiently solve the CQPs, we propose a constraint-reduced variant of a Mehrotra-predictor-corrector algorithm, with a novel constraint selection rule. We prove that, under appropriate assumptions, the proposed optimization algorithm converges globally to the solution at a locally q-quadratic rate. We test the algorithm on randomly generated problems, and the numerical results indicate that the combination of the proposed algorithm and the constraint selection rule outperforms other compared constraint-reduced algorithms, especially for problems with many more inequality constraints than variables.