2 resultados para Habitat-dependent Selection

em DRUM (Digital Repository at the University of Maryland)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human immunodeficiency virus (HIV) rapidly evolves through generation and selection of mutants that can escape drug therapy. This process is fueled, in part, by the presumably highly error prone polymerase reverse transcriptase (RT). Fidelity of polymerases can be influenced by cation co-factors. Physiologically, magnesium (Mg2+) is used as a co-factor by RT to perform catalysis, however, alternative cations including manganese (Mn2+), cobalt (Co2+), and zinc (Zn2+) can also be used. I demonstrate here that fidelity and inhibition of HIV RT can be influenced differently, in vitro, by divalent cations depending on their concentration. The reported mutation frequency for purified HIV RT in vitro is typically in the 10-4 range (per nucleotide addition), making the enzyme several-fold less accurate than most polymerases. Paradoxically, results examining HIV replication in cells indicate an error frequency that is ~10 times lower than the error rate obtained in the test tube. Here, I reconcile, at least in part, these discrepancies by showing that HIV RT fidelity in vitro is in the same range as cellular results, in physiological concentrations of free Mg2+ (~0.25 mM). At low Mg2+, mutation rates were 5-10 times lower compared to high Mg2+ conditions (5-10 mM). Alternative divalent cations also have a concentration-dependent effect on RT fidelity. Presumed promutagenic cations Mn2+ and Co2+ decreases the fidelity of RT only at elevated concentrations, and Zn2+, when present in low concentration, increases the fidelity of HIV-1 RT by ~2.5 fold compared to Mg2+. HIV-1 and HIV-2 RT inhibition by nucleoside (NRTIs) and non-nucleoside RT inhibitors (NNRTIs) in vitro is also affected by the Mg2+ concentration. NRTIs lacking 3'-OH group inhibited both enzymes less efficiently in low Mg2+ than in high Mg2+; whereas inhibition by the “translocation defective RT inhibitor”, which retains the 3ʹ-OH, was unaffected by Mg2+ concentration, suggesting that NRTIs with a 3ʹ-OH group may be more potent than other NRTIs. In contrast, NNRTIs were more effective in low vs. high Mg2+ conditions. Overall, the studies presented reveal strategies for designing novel RT inhibitors and strongly emphasize the need for studying HIV RT and RT inhibitors in physiologically relevant low Mg2+ conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An increasing focus in evolutionary biology is on the interplay between mesoscale ecological and evolutionary processes such as population demographics, habitat tolerance, and especially geographic distribution, as potential drivers responsible for patterns of diversification and extinction over geologic time. However, few studies to date connect organismal processes such as survival and reproduction through mesoscale patterns to long-term macroevolutionary trends. In my dissertation, I investigate how mechanism of seed dispersal, mediated through geographic range size, influences diversification rates in the Rosales (Plantae: Anthophyta). In my first chapter, I validate the phylogenetic comparative methods that I use in my second and third chapters. Available state speciation and extinction (SSE) models assumptions about evolution known to be false through fossil data. I show, however, that as long as net diversification rates remain positive – a condition likely true for the Rosales – these violations of SSE’s assumptions do not cause significantly biased results. With SSE methods validated, my second chapter reconstructs three associations that appear to increase diversification rate for Rosalean genera: (1) herbaceous habit; (2) a three-way interaction combining animal dispersal, high within-genus species richness, and geographic range on multiple continents; (3) a four-way interaction combining woody habit with the other three characteristics of (2). I suggest that the three- and four-way interactions represent colonization ability and resulting extinction resistance in the face of late Cenozoic climate change; however, there are other possibilities as well that I hope to investigate in future research. My third chapter reconstructs the phylogeographic history of the Rosales using both non-fossil-assisted SSE methods as well as fossil-informed traditional phylogeographic analysis. Ancestral state reconstructions indicate that the Rosaceae diversified in North America while the other Rosalean families diversified elsewhere, possibly in Eurasia. SSE is able to successfully identify groups of genera that were likely to have been ancestrally widespread, but has poorer taxonomic resolution than methods that use fossil data. In conclusion, these chapters together suggest several potential causal links between organismal, mesoscale, and geologic scale processes, but further work will be needed to test the hypotheses that I raise here.