4 resultados para Grooved Pavements.

em DRUM (Digital Repository at the University of Maryland)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gemstone Team SnowMelt

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Internally-grooved refrigeration tubes maximize tube-side evaporative heat transfer rates and have been identified as a most promising technology for integration into compact cold plates. Unfortunately, the absence of phenomenological insights and physical models hinders the extrapolation of grooved-tube performance to new applications. The success of regime-based heat transfer correlations for smooth tubes has motivated the current effort to explore the relationship between flow regimes and enhanced heat transfer in internally-grooved tubes. In this thesis, a detailed analysis of smooth and internally-grooved tube data reveals that performance improvement in internally-grooved tubes at low-to-intermediate mass flux is a result of early flow regime transition. Based on this analysis, a new flow regime map and corresponding heat transfer coefficient correlation, which account for the increased wetted angle, turbulence, and Gregorig effects unique to internally-grooved tubes, were developed. A two-phase test facility was designed and fabricated to validate the newly-developed flow regime map and regime-based heat transfer coefficient correlation. As part of this setup, a non-intrusive optical technique was developed to study the dynamic nature of two-phase flows. It was found that different flow regimes result in unique temporally varying film thickness profiles. Using these profiles, quantitative flow regime identification measures were developed, including the ability to explain and quantify the more subtle transitions that exist between dominant flow regimes. Flow regime data, based on the newly-developed method, and heat transfer coefficient data, using infrared thermography, were collected for two-phase HFE-7100 flow in horizontal 2.62mm - 8.84mm diameter smooth and internally-grooved tubes with mass fluxes from 25-300 kg/m²s, heat fluxes from 4-56 kW/m², and vapor qualities approaching 1. In total, over 6500 combined data points for the adiabatic and diabatic smooth and internally-grooved tubes were acquired. Based on results from the experiments and a reinterpretation of data from independent researchers, it was established that heat transfer enhancement in internally-grooved tubes at low-to-intermediate mass flux is primarily due to early flow regime transition to Annular flow. The regime-based heat transfer coefficient outperformed empirical correlations from the literature, with mean and absolute deviations of 4.0% and 32% for the full range of data collected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cold in-place recycling (CIR) and cold central plant recycling (CCPR) of asphalt concrete (AC) and/or full-depth reclamation (FDR) of AC and aggregate base are faster and less costly rehabilitation alternatives to conventional reconstruction for structurally distressed pavements. This study examines 26 different rehabilitation projects across the USA and Canada. Field cores from these projects were tested for dynamic modulus and repeated load permanent deformation. These structural characteristics are compared to reference values for hot mix asphalt (HMA). A rutting sensitivity analysis was performed on two rehabilitation scenarios with recycled and conventional HMA structural overlays in different climatic conditions using the Mechanistic Empirical Pavement Design (MEPDG). The cold-recycled scenarios exhibited performance similar to that of HMA overlays for most cases. The exceptions were the cases with thin HMA wearing courses and/or very poor cold-recycled material quality. The overall conclusion is that properly designed CIR/FDR/CCPR cold-recycled materials are a viable alternative to virgin HMA materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis deals with quantifying the resilience of a network of pavements. Calculations were carried out by modeling network performance under a set of possible damage-meteorological scenarios with known probability of occurrence. Resilience evaluation was performed a priori while accounting for optimal preparedness decisions and additional response actions that can be taken under each of the scenarios. Unlike the common assumption that the pre-event condition of all system components is uniform, fixed, and pristine, component condition evolution was incorporated herein. For this purpose, the health of the individual system components immediately prior to hazard event impact, under all considered scenarios, was associated with a serviceability rating. This rating was projected to reflect both natural deterioration and any intermittent improvements due to maintenance. The scheme was demonstrated for a hypothetical case study involving Laguardia Airport. Results show that resilience can be impacted by the condition of the infrastructure elements, their natural deterioration processes, and prevailing maintenance plans. The findings imply that, in general, upper bound values are reported in ordinary resilience work, and that including evolving component conditions is of value.