2 resultados para Gradient-based approaches
em DRUM (Digital Repository at the University of Maryland)
Resumo:
The goal of image retrieval and matching is to find and locate object instances in images from a large-scale image database. While visual features are abundant, how to combine them to improve performance by individual features remains a challenging task. In this work, we focus on leveraging multiple features for accurate and efficient image retrieval and matching. We first propose two graph-based approaches to rerank initially retrieved images for generic image retrieval. In the graph, vertices are images while edges are similarities between image pairs. Our first approach employs a mixture Markov model based on a random walk model on multiple graphs to fuse graphs. We introduce a probabilistic model to compute the importance of each feature for graph fusion under a naive Bayesian formulation, which requires statistics of similarities from a manually labeled dataset containing irrelevant images. To reduce human labeling, we further propose a fully unsupervised reranking algorithm based on a submodular objective function that can be efficiently optimized by greedy algorithm. By maximizing an information gain term over the graph, our submodular function favors a subset of database images that are similar to query images and resemble each other. The function also exploits the rank relationships of images from multiple ranked lists obtained by different features. We then study a more well-defined application, person re-identification, where the database contains labeled images of human bodies captured by multiple cameras. Re-identifications from multiple cameras are regarded as related tasks to exploit shared information. We apply a novel multi-task learning algorithm using both low level features and attributes. A low rank attribute embedding is joint learned within the multi-task learning formulation to embed original binary attributes to a continuous attribute space, where incorrect and incomplete attributes are rectified and recovered. To locate objects in images, we design an object detector based on object proposals and deep convolutional neural networks (CNN) in view of the emergence of deep networks. We improve a Fast RCNN framework and investigate two new strategies to detect objects accurately and efficiently: scale-dependent pooling (SDP) and cascaded rejection classifiers (CRC). The SDP improves detection accuracy by exploiting appropriate convolutional features depending on the scale of input object proposals. The CRC effectively utilizes convolutional features and greatly eliminates negative proposals in a cascaded manner, while maintaining a high recall for true objects. The two strategies together improve the detection accuracy and reduce the computational cost.
Resumo:
The fruit is one of the most complex and important structures produced by flowering plants, and understanding the development and maturation process of fruits in different angiosperm species with diverse fruit structures is of immense interest. In the work presented here, molecular genetics and genomic analysis are used to explore the processes that form the fruit in two species: The model organism Arabidopsis and the diploid strawberry Fragaria vesca. One important basic question concerns the molecular genetic basis of fruit patterning. A long-standing model of Arabidopsis fruit (the gynoecium) patterning holds that auxin produced at the apex diffuses downward, forming a gradient that provides apical-basal positional information to specify different tissue types along the gynoecium’s length. The proposed gradient, however, has never been observed and the model appears inconsistent with a number of observations. I present a new, alternative model, wherein auxin acts to establish the adaxial-abaxial domains of the carpel primordia, which then ensures proper development of the final gynoecium. A second project utilizes genomics to identify genes that regulate fruit color by analyzing the genome sequences of Fragaria vesca, a species of wild strawberry. Shared and distinct SNPs among three F. vesca accessions were identified, providing a foundation for locating candidate mutations underlying phenotypic variations among different F. vesca accessions. Through systematic analysis of relevant SNP variants, a candidate SNP in FveMYB10 was identified that may underlie the fruit color in the yellow-fruited accessions, which was subsequently confirmed by functional assays. Our lab has previously generated extensive RNA-sequencing data that depict genome-scale gene expression profiles in F. vesca fruit and flower tissues at different developmental stages. To enhance the accessibility of this dataset, the web-based eFP software was adapted for this dataset, allowing visualization of gene expression in any tissues by user-initiated queries. Together, this thesis work proposes a well-supported new model of fruit patterning in Arabidopsis and provides further resources for F. vesca, including genome-wide variant lists and the ability to visualize gene expression. This work will facilitate future work linking traits of economic importance to specific genes and gaining novel insights into fruit patterning and development.