2 resultados para Global Approach
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Hydroxyl radical (OH) is the primary oxidant in the troposphere, initiating the removal of numerous atmospheric species including greenhouse gases, pollutants that are detrimental to human health, and ozone-depleting substances. Because of the complexity of OH chemistry, models vary widely in their OH chemistry schemes and resulting methane (CH4) lifetimes. The current state of knowledge concerning global OH abundances is often contradictory. This body of work encompasses three projects that investigate tropospheric OH from a modeling perspective, with the goal of improving the tropospheric community’s knowledge of the atmospheric lifetime of CH4. First, measurements taken during the airborne CONvective TRansport of Active Species in the Tropics (CONTRAST) field campaign are used to evaluate OH in global models. A box model constrained to measured variables is utilized to infer concentrations of OH along the flight track. Results are used to evaluate global model performance, suggest against the existence of a proposed “OH Hole” in the tropical Western Pacific, and investigate implications of high O3/low H2O filaments on chemical transport to the stratosphere. While methyl chloroform-based estimates of global mean OH suggest that models are overestimating OH, we report evidence that these models are actually underestimating OH in the tropical Western Pacific. The second project examines OH within global models to diagnose differences in CH4 lifetime. I developed an approach to quantify the roles of OH precursor field differences (O3, H2O, CO, NOx, etc.) using a neural network method. This technique enables us to approximate the change in CH4 lifetime resulting from variations in individual precursor fields. The dominant factors driving CH4 lifetime differences between models are O3, CO, and J(O3-O1D). My third project evaluates the effect of climate change on global fields of OH using an empirical model. Observations of H2O and O3 from satellite instruments are combined with a simulation of tropical expansion to derive changes in global mean OH over the past 25 years. We find that increasing H2O and increasing width of the tropics tend to increase global mean OH, countering the increasing CH4 sink and resulting in well-buffered global tropospheric OH concentrations.
Resumo:
Global projections for climate change impacts produce a startling picture of the future for low-lying coastal communities. The United States’ Chesapeake Bay region and especially marginalized and rural communities will be severely impacted by sea level rise and other changes over the next one hundred years. The concept of resilience has been theorized as a measure of social-ecological system health and as a unifying framework under which people can work together towards climate change adaptation. But it has also been critiqued for the way in which it does not adequately take into account local perspective and experiences, bringing into question the value of this concept as a tool for local communities. We must be sure that the concerns, weaknesses, and strengths of particular local communities are part of the climate change adaptation, decision-making, and planning process in which communities participate. An example of this type of planning process is the Deal Island Marsh and Community Project (DIMCP), a grant funded initiative to build resilience within marsh ecosystems and communities of the Deal Island Peninsula area of Maryland (USA) to environmental and social impacts from climate change. I argue it is important to have well-developed understandings of vulnerabilities and resiliencies identified by local residents and others to accomplish this type of work. This dissertation explores vulnerability and resilience to climate change using an engaged and ethnographic anthropological perspective. Utilizing participant observation, semi-structured and structured interviews, text analysis, and cultural domain analysis I produce an in-depth perspective of what vulnerability and resilience means to the DIMCP stakeholder network. Findings highlight significant vulnerabilities and resiliencies inherent in the local area and how these interface with additional vulnerabilities and resiliencies seen from a nonlocal perspective. I conclude that vulnerability and resilience are highly dynamic and context-specific for the local community. Vulnerabilities relate to climate change and other social and environmental changes. Resilience is a long-standing way of life, not a new concept related specifically to climate change. This ethnographic insight into vulnerability and resilience provides a basis for stronger engagement in collaboration and planning for the future.