3 resultados para General Dynamics Corporation.
em DRUM (Digital Repository at the University of Maryland)
Resumo:
In this dissertation, we explore the use of pursuit interactions as a building block for collective behavior, primarily in the context of constant bearing (CB) cyclic pursuit. Pursuit phenomena are observed throughout the natural environment and also play an important role in technological contexts, such as missile-aircraft encounters and interactions between unmanned vehicles. While pursuit is typically regarded as adversarial, we demonstrate that pursuit interactions within a cyclic pursuit framework give rise to seemingly coordinated group maneuvers. We model a system of agents (e.g. birds, vehicles) as particles tracing out curves in the plane, and illustrate reduction to the shape space of relative positions and velocities. Introducing the CB pursuit strategy and associated pursuit law, we consider the case for which agent i pursues agent i+1 (modulo n) with the CB pursuit law. After deriving closed-loop cyclic pursuit dynamics, we demonstrate asymptotic convergence to an invariant submanifold (corresponding to each agent attaining the CB pursuit strategy), and proceed by analysis of the reduced dynamics restricted to the submanifold. For the general setting, we derive existence conditions for relative equilibria (circling and rectilinear) as well as for system trajectories which preserve the shape of the collective (up to similarity), which we refer to as pure shape equilibria. For two illustrative low-dimensional cases, we provide a more comprehensive analysis, deriving explicit trajectory solutions for the two-particle "mutual pursuit" case, and detailing the stability properties of three-particle relative equilibria and pure shape equilibria. For the three-particle case, we show that a particular choice of CB pursuit parameters gives rise to remarkable almost-periodic trajectories in the physical space. We also extend our study to consider CB pursuit in three dimensions, deriving a feedback law for executing the CB pursuit strategy, and providing a detailed analysis of the two-particle mutual pursuit case. We complete the work by considering evasive strategies to counter the motion camouflage (MC) pursuit law. After demonstrating that a stochastically steering evader is unable to thwart the MC pursuit strategy, we propose a (deterministic) feedback law for the evader and demonstrate the existence of circling equilibria for the closed-loop pursuer-evader dynamics.
Resumo:
Atlantic Menhaden Brevoortia tyrannus is a commercially and ecologically important forage fish abundant on the Atlantic Coast of the United States. We conducted spatial and temporal analyses of larval Atlantic Menhaden using data collected from two large-scale ichthyoplankton programs during 1977-1987 and 1999-2013 to construct indices of larval abundance and survival over time, evaluate how environmental factors affect early life survival, and examine how larvae are distributed in space to gain knowledge on spawning and larval dispersal. Over time, we found larval abundance to increase, while early life survival declined. Coastal temperature, wind speed, and Atlantic Multidecadal Oscillation were found to potentially explain some of this decline in survival. Over both periods, we found evidence spawning predominantly occurs near shore, from New York to North Carolina, increasing in intensity southwards. While the general spatial patterns were consistent, we observed some localized variation and overall expansion of occupied area by larvae.
Resumo:
Understanding how imperfect information affects firms' investment decision helps answer important questions in economics, such as how we may better measure economic uncertainty; how firms' forecasts would affect their decision-making when their beliefs are not backed by economic fundamentals; and how important are the business cycle impacts of changes in firms' productivity uncertainty in an environment of incomplete information. This dissertation provides a synthetic answer to all these questions, both empirically and theoretically. The first chapter, provides empirical evidence to demonstrate that survey-based forecast dispersion identifies a distinctive type of second moment shocks different from the canonical volatility shocks to productivity, i.e. uncertainty shocks. Such forecast disagreement disturbances can affect the distribution of firm-level beliefs regardless of whether or not belief changes are backed by changes in economic fundamentals. At the aggregate level, innovations that increase the dispersion of firms' forecasts lead to persistent declines in aggregate investment and output, which are followed by a slow recovery. On the contrary, the larger dispersion of future firm-specific productivity innovations, the standard way to measure economic uncertainty, delivers the ``wait and see" effect, such that aggregate investment experiences a sharp decline, followed by a quick rebound, and then overshoots. At the firm level, data uncovers that more productive firms increase investments given rises in productivity dispersion for the future, whereas investments drop when firms disagree more about the well-being of their future business conditions. These findings challenge the view that the dispersion of the firms' heterogeneous beliefs captures the concept of economic uncertainty, defined by a model of uncertainty shocks. The second chapter presents a general equilibrium model of heterogeneous firms subject to the real productivity uncertainty shocks and informational disagreement shocks. As firms cannot perfectly disentangle aggregate from idiosyncratic productivity because of imperfect information, information quality thus drives the wedge of difference between the unobserved productivity fundamentals, and the firms' beliefs about how productive they are. Distribution of the firms' beliefs is no longer perfectly aligned with the distribution of firm-level productivity across firms. This model not only explains why, at the macro and micro level, disagreement shocks are different from uncertainty shocks, as documented in Chapter 1, but helps reconcile a key challenge faced by the standard framework to study economic uncertainty: a trade-off between sizable business cycle effects due to changes in uncertainty, and the right amount of pro-cyclicality of firm-level investment rate dispersion, as measured by its correlation with the output cycles.