2 resultados para Function of locally varying complexity

em DRUM (Digital Repository at the University of Maryland)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Denitrification is a microbially-mediated process that converts nitrate (NO3-) to dinitrogen (N2) gas and has implications for soil fertility, climate change, and water quality. Using PCR, qPCR, and T-RFLP, the effects of environmental drivers and land management on the abundance and composition of functional genes were investigated. Environmental variables affecting gene abundance were soil type, soil depth, nitrogen concentrations, soil moisture, and pH, although each gene was unique in its spatial distribution and controlling factors. The inclusion of microbial variables, specifically genotype and gene abundance, improved denitrification models and highlights the benefit of including microbial data in modeling denitrification. Along with some evidence of niche selection, I show that nirS is a good predictor of denitrification enzyme activity (DEA) and N2O:N2 ratio, especially in alkaline and wetland soils. nirK was correlated to N2O production and became a stronger predictor of DEA in acidic soils, indicating that nirK and nirS are not ecologically redundant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The survival and descent of cells is universally dependent on maintaining their proteins in a properly folded condition. It is widely accepted that the information for the folding of the nascent polypeptide chain into a native protein is encrypted in the amino acid sequence, and the Nobel Laureate Christian Anfinsen was the first to demonstrate that a protein could spontaneously refold after complete unfolding. However, it became clear that the observed folding rates for many proteins were much slower than rates estimated in vivo. This led to the recognition of required protein-protein interactions that promote proper folding. A unique group of proteins, the molecular chaperones, are responsible for maintaining protein homeostasis during normal growth as well as stress conditions. Chaperonins (CPNs) are ubiquitous and essential chaperones. They form ATP-dependent, hollow complexes that encapsulate polypeptides in two back-to-back stacked multisubunit rings, facilitating protein folding through highly cooperative allosteric articulation. CPNs are usually classified into Group I and Group II. Here, I report the characterization of a novel CPN belonging to a third Group, recently discovered in bacteria. Group III CPNs have close phylogenetic association to the Group II CPNs found in Archaea and Eukarya, and may be a relic of the Last Common Ancestor of the CPN family. The gene encoding the Group III CPN from Carboxydothermus hydrogenoformans and Candidatus Desulforudis audaxviator was cloned in E. coli and overexpressed in order to both characterize the protein and to demonstrate its ability to function as an ATPase chaperone. The opening and closing cycle of the Chy chaperonin was examined via site-directed mutations affecting the ATP binding site at R155. To relate the mutational analysis to the structure of the CPN, the crystal structure of both the AMP-PNP (an ATP analogue) and ADP bound forms were obtained in collaboration with Sun-Shin Cha in Seoul, South Korea. The ADP and ATP binding site substitutions resulted in frozen forms of the structures in open and closed conformations. From this, mutants were designed to validate hypotheses regarding key ATP interacting sites as well as important stabilizing interactions, and to observe the physical properties of the resulting complexes by calorimetry.