2 resultados para Freshwater-based fluids
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Ecological risk assessment (ERA) is a framework for monitoring risks of exposure and adverse effects of environmental stressors to populations or communities of interest. One tool of ERA is the biomarker, which is a characteristic of an organism that reliably indicates exposure to or effects of a stressor like chemical pollution. Traditional biomarkers which rely on characteristics at the tissue level and higher often detect only acute exposures to stressors. Sensitive molecular biomarkers may detect lower stressor levels than traditional biomarkers, which helps inform risk mitigation and restoration efforts before populations and communities are irreversibly affected. In this study I developed gene expression-based molecular biomarkers of exposure to metals and insecticides in the model toxicological freshwater amphipod Hyalella azteca. My goals were to not only create sensitive molecular biomarkers for these chemicals, but also to show the utility and versatility of H. azteca in molecular studies for toxicology and risk assessment. I sequenced and assembled the H. azteca transcriptome to identify reference and stress-response gene transcripts suitable for expression monitoring. I exposed H. azteca to sub-lethal concentrations of metals (cadmium and copper) and insecticides (DDT, permethrin, and imidacloprid). Reference genes used to create normalization factors were determined for each exposure using the programs BestKeeper, GeNorm, and NormFinder. Both metals increased expression of a nuclear transcription factor (Cnc), an ABC transporter (Mrp4), and a heat shock protein (Hsp90), giving evidence of general metal exposure signature. Cadmium uniquely increased expression of a DNA repair protein (Rad51) and increased Mrp4 expression more than copper (7-fold increase compared to 2-fold increase). Together these may be unique biomarkers distinguishing cadmium and copper exposures. DDT increased expression of Hsp90, Mrp4, and the immune response gene Lgbp. Permethrin increased expression of a cytochrome P450 (Cyp2j2) and decreased expression of the immune response gene Lectin-1. Imidacloprid did not affect gene expression. Unique biomarkers were seen for DDT and permethrin, but the genes studied were not sensitive enough to detect imidacloprid at the levels used here. I demonstrated that gene expression in H. azteca detects specific chemical exposures at sub-lethal concentrations, making expression monitoring using this amphipod a useful and sensitive biomarker for risk assessment of chemical exposure.
Resumo:
This dissertation is devoted to the equations of motion governing the evolution of a fluid or gas at the macroscopic scale. The classical model is a PDE description known as the Navier-Stokes equations. The behavior of solutions is notoriously complex, leading many in the scientific community to describe fluid mechanics using a statistical language. In the physics literature, this is often done in an ad-hoc manner with limited precision about the sense in which the randomness enters the evolution equation. The stochastic PDE community has begun proposing precise models, where a random perturbation appears explicitly in the evolution equation. Although this has been an active area of study in recent years, the existing literature is almost entirely devoted to incompressible fluids. The purpose of this thesis is to take a step forward in addressing this statistical perspective in the setting of compressible fluids. In particular, we study the well posedness for the corresponding system of Stochastic Navier Stokes equations, satisfied by the density, velocity, and temperature. The evolution of the momentum involves a random forcing which is Brownian in time and colored in space. We allow for multiplicative noise, meaning that spatial correlations may depend locally on the fluid variables. Our main result is a proof of global existence of weak martingale solutions to the Cauchy problem set within a bounded domain, emanating from large initial datum. The proof involves a mix of deterministic and stochastic analysis tools. Fundamentally, the approach is based on weak compactness techniques from the deterministic theory combined with martingale methods. Four layers of approximate stochastic PDE's are built and analyzed. A careful study of the probability laws of our approximating sequences is required. We prove appropriate tightness results and appeal to a recent generalization of the Skorohod theorem. This ultimately allows us to deduce analogues of the weak compactness tools of Lions and Feireisl, appropriately interpreted in the stochastic setting.