3 resultados para Frequency-dependent

em DRUM (Digital Repository at the University of Maryland)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Charge carrier lifetime measurements in bulk or unfinished photovoltaic (PV) materials allow for a more accurate estimate of power conversion efficiency in completed solar cells. In this work, carrier lifetimes in PV- grade silicon wafers are obtained by way of quasi-steady state photoconductance measurements. These measurements use a contactless RF system coupled with varying narrow spectrum input LEDs, ranging in wavelength from 460 nm to 1030 nm. Spectral dependent lifetime measurements allow for determination of bulk and surface properties of the material, including the intrinsic bulk lifetime and the surface recombination velocity. The effective lifetimes are fit to an analytical physics-based model to determine the desired parameters. Passivated and non-passivated samples are both studied and are shown to have good agreement with the theoretical model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human immunodeficiency virus (HIV) rapidly evolves through generation and selection of mutants that can escape drug therapy. This process is fueled, in part, by the presumably highly error prone polymerase reverse transcriptase (RT). Fidelity of polymerases can be influenced by cation co-factors. Physiologically, magnesium (Mg2+) is used as a co-factor by RT to perform catalysis, however, alternative cations including manganese (Mn2+), cobalt (Co2+), and zinc (Zn2+) can also be used. I demonstrate here that fidelity and inhibition of HIV RT can be influenced differently, in vitro, by divalent cations depending on their concentration. The reported mutation frequency for purified HIV RT in vitro is typically in the 10-4 range (per nucleotide addition), making the enzyme several-fold less accurate than most polymerases. Paradoxically, results examining HIV replication in cells indicate an error frequency that is ~10 times lower than the error rate obtained in the test tube. Here, I reconcile, at least in part, these discrepancies by showing that HIV RT fidelity in vitro is in the same range as cellular results, in physiological concentrations of free Mg2+ (~0.25 mM). At low Mg2+, mutation rates were 5-10 times lower compared to high Mg2+ conditions (5-10 mM). Alternative divalent cations also have a concentration-dependent effect on RT fidelity. Presumed promutagenic cations Mn2+ and Co2+ decreases the fidelity of RT only at elevated concentrations, and Zn2+, when present in low concentration, increases the fidelity of HIV-1 RT by ~2.5 fold compared to Mg2+. HIV-1 and HIV-2 RT inhibition by nucleoside (NRTIs) and non-nucleoside RT inhibitors (NNRTIs) in vitro is also affected by the Mg2+ concentration. NRTIs lacking 3'-OH group inhibited both enzymes less efficiently in low Mg2+ than in high Mg2+; whereas inhibition by the “translocation defective RT inhibitor”, which retains the 3ʹ-OH, was unaffected by Mg2+ concentration, suggesting that NRTIs with a 3ʹ-OH group may be more potent than other NRTIs. In contrast, NNRTIs were more effective in low vs. high Mg2+ conditions. Overall, the studies presented reveal strategies for designing novel RT inhibitors and strongly emphasize the need for studying HIV RT and RT inhibitors in physiologically relevant low Mg2+ conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metamamterials are 1D, 2D or 3D arrays of articial atoms. The articial atoms, called "meta-atoms", can be any component with tailorable electromagnetic properties, such as resonators, LC circuits, nano particles, and so on. By designing the properties of individual meta-atoms and the interaction created by putting them in a lattice, one can create a metamaterial with intriguing properties not found in nature. My Ph. D. work examines the meta-atoms based on radio frequency superconducting quantum interference devices (rf-SQUIDs); their tunability with dc magnetic field, rf magnetic field, and temperature are studied. The rf-SQUIDs are superconducting split ring resonators in which the usual capacitance is supplemented with a Josephson junction, which introduces strong nonlinearity in the rf properties. At relatively low rf magnetic field, a magnetic field tunability of the resonant frequency of up to 80 THz/Gauss by dc magnetic field is observed, and a total frequency tunability of 100% is achieved. The macroscopic quantum superconducting metamaterial also shows manipulative self-induced broadband transparency due to a qualitatively novel nonlinear mechanism that is different from conventional electromagnetically induced transparency (EIT) or its classical analogs. A near complete disappearance of resonant absorption under a range of applied rf flux is observed experimentally and explained theoretically. The transparency comes from the intrinsic bi-stability and can be tuned on/ off easily by altering rf and dc magnetic fields, temperature and history. Hysteretic in situ 100% tunability of transparency paves the way for auto-cloaking metamaterials, intensity dependent filters, and fast-tunable power limiters. An rf-SQUID metamaterial is shown to have qualitatively the same behavior as a single rf-SQUID with regards to dc flux, rf flux and temperature tuning. The two-tone response of self-resonant rf-SQUID meta-atoms and metamaterials is then studied here via intermodulation (IM) measurement over a broad range of tone frequencies and tone powers. A sharp onset followed by a surprising strongly suppressed IM region near the resonance is observed. This behavior can be understood employing methods in nonlinear dynamics; the sharp onset, and the gap of IM, are due to sudden state jumps during a beat of the two-tone sum input signal. The theory predicts that the IM can be manipulated with tone power, center frequency, frequency difference between the two tones, and temperature. This quantitative understanding potentially allows for the design of rf-SQUID metamaterials with either very low or very high IM response.