2 resultados para Frequency band width
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Wireless power transfer (WPT) and radio frequency (RF)-based energy har- vesting arouses a new wireless network paradigm termed as wireless powered com- munication network (WPCN), where some energy-constrained nodes are enabled to harvest energy from the RF signals transferred by other energy-sufficient nodes to support the communication operations in the network, which brings a promising approach for future energy-constrained wireless network design. In this paper, we focus on the optimal WPCN design. We consider a net- work composed of two communication groups, where the first group has sufficient power supply but no available bandwidth, and the second group has licensed band- width but very limited power to perform required information transmission. For such a system, we introduce the power and bandwidth cooperation between the two groups so that both group can accomplish their expected information delivering tasks. Multiple antennas are employed at the hybrid access point (H-AP) to en- hance both energy and information transfer efficiency and the cooperative relaying is employed to help the power-limited group to enhance its information transmission throughput. Compared with existing works, cooperative relaying, time assignment, power allocation, and energy beamforming are jointly designed in a single system. Firstly, we propose a cooperative transmission protocol for the considered system, where group 1 transmits some power to group 2 to help group 2 with information transmission and then group 2 gives some bandwidth to group 1 in return. Sec- ondly, to explore the information transmission performance limit of the system, we formulate two optimization problems to maximize the system weighted sum rate by jointly optimizing the time assignment, power allocation, and energy beamforming under two different power constraints, i.e., the fixed power constraint and the aver- age power constraint, respectively. In order to make the cooperation between the two groups meaningful and guarantee the quality of service (QoS) requirements of both groups, the minimal required data rates of the two groups are considered as constraints for the optimal system design. As both problems are non-convex and have no known solutions, we solve it by using proper variable substitutions and the semi-definite relaxation (SDR). We theoretically prove that our proposed solution method can guarantee to find the global optimal solution. Thirdly, consider that the WPCN has promising application potentials in future energy-constrained net- works, e.g., wireless sensor network (WSN), wireless body area network (WBAN) and Internet of Things (IoT), where the power consumption is very critical. We investigate the minimal power consumption optimal design for the considered co- operation WPCN. For this, we formulate an optimization problem to minimize the total consumed power by jointly optimizing the time assignment, power allocation, and energy beamforming under required data rate constraints. As the problem is also non-convex and has no known solutions, we solve it by using some variable substitutions and the SDR method. We also theoretically prove that our proposed solution method for the minimal power consumption design guarantees the global optimal solution. Extensive experimental results are provided to discuss the system performance behaviors, which provide some useful insights for future WPCN design. It shows that the average power constrained system achieves higher weighted sum rate than the fixed power constrained system. Besides, it also shows that in such a WPCN, relay should be placed closer to the multi-antenna H-AP to achieve higher weighted sum rate and consume lower total power.
Resumo:
An economy of effort is a core characteristic of highly skilled motor performance often described as being effortless or automatic. Electroencephalographic (EEG) evaluation of cortical activity in elite performers has consistently revealed a reduction in extraneous associative cortical activity and an enhancement of task-relevant cortical processes. However, this has only been demonstrated under what are essentially practice-like conditions. Recently it has been shown that cerebral cortical activity becomes less efficient when performance occurs in a stressful, complex social environment. This dissertation examines the impact of motor skill training or practice on the EEG cortical dynamics that underlie performance in a stressful, complex social environment. Sixteen ROTC cadets participated in head-to-head pistol shooting competitions before and after completing nine sessions of skill training over three weeks. Spectral power increased in the theta frequency band and decreased in the low alpha frequency band after skill training. EEG Coherence increased in the left frontal region and decreased in the left temporal region after the practice intervention. These suggest a refinement of cerebral cortical dynamics with a reduction of task extraneous processing in the left frontal region and an enhancement of task related processing in the left temporal region consistent with the skill level reached by participants. Partitioning performance into ‘best’ and ‘worst’ based on shot score revealed that deliberate practice appears to optimize cerebral cortical activity of ‘best’ performances which are accompanied by a reduction in task-specific processes reflected by increased high-alpha power, while ‘worst’ performances are characterized by an inappropriate reduction in task-specific processing resulting in a loss of focus reflected by higher high-alpha power after training when compared to ‘best’ performances. Together, these studies demonstrate the power of experience afforded by practice, as a controllable factor, to promote resilience of cerebral cortical efficiency in complex environments.