3 resultados para Finite difference time-domain analysis

em DRUM (Digital Repository at the University of Maryland)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Finding rare events in multidimensional data is an important detection problem that has applications in many fields, such as risk estimation in insurance industry, finance, flood prediction, medical diagnosis, quality assurance, security, or safety in transportation. The occurrence of such anomalies is so infrequent that there is usually not enough training data to learn an accurate statistical model of the anomaly class. In some cases, such events may have never been observed, so the only information that is available is a set of normal samples and an assumed pairwise similarity function. Such metric may only be known up to a certain number of unspecified parameters, which would either need to be learned from training data, or fixed by a domain expert. Sometimes, the anomalous condition may be formulated algebraically, such as a measure exceeding a predefined threshold, but nuisance variables may complicate the estimation of such a measure. Change detection methods used in time series analysis are not easily extendable to the multidimensional case, where discontinuities are not localized to a single point. On the other hand, in higher dimensions, data exhibits more complex interdependencies, and there is redundancy that could be exploited to adaptively model the normal data. In the first part of this dissertation, we review the theoretical framework for anomaly detection in images and previous anomaly detection work done in the context of crack detection and detection of anomalous components in railway tracks. In the second part, we propose new anomaly detection algorithms. The fact that curvilinear discontinuities in images are sparse with respect to the frame of shearlets, allows us to pose this anomaly detection problem as basis pursuit optimization. Therefore, we pose the problem of detecting curvilinear anomalies in noisy textured images as a blind source separation problem under sparsity constraints, and propose an iterative shrinkage algorithm to solve it. Taking advantage of the parallel nature of this algorithm, we describe how this method can be accelerated using graphical processing units (GPU). Then, we propose a new method for finding defective components on railway tracks using cameras mounted on a train. We describe how to extract features and use a combination of classifiers to solve this problem. Then, we scale anomaly detection to bigger datasets with complex interdependencies. We show that the anomaly detection problem naturally fits in the multitask learning framework. The first task consists of learning a compact representation of the good samples, while the second task consists of learning the anomaly detector. Using deep convolutional neural networks, we show that it is possible to train a deep model with a limited number of anomalous examples. In sequential detection problems, the presence of time-variant nuisance parameters affect the detection performance. In the last part of this dissertation, we present a method for adaptively estimating the threshold of sequential detectors using Extreme Value Theory on a Bayesian framework. Finally, conclusions on the results obtained are provided, followed by a discussion of possible future work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deployment of low power basestations within cellular networks can potentially increase both capacity and coverage. However, such deployments require efficient resource allocation schemes for managing interference from the low power and macro basestations that are located within each other’s transmission range. In this dissertation, we propose novel and efficient dynamic resource allocation algorithms in the frequency, time and space domains. We show that the proposed algorithms perform better than the current state-of-art resource management algorithms. In the first part of the dissertation, we propose an interference management solution in the frequency domain. We introduce a distributed frequency allocation scheme that shares frequencies between macro and low power pico basestations, and guarantees a minimum average throughput to users. The scheme seeks to minimize the total number of frequencies needed to honor the minimum throughput requirements. We evaluate our scheme using detailed simulations and show that it performs on par with the centralized optimum allocation. Moreover, our proposed scheme outperforms a static frequency reuse scheme and the centralized optimal partitioning between the macro and picos. In the second part of the dissertation, we propose a time domain solution to the interference problem. We consider the problem of maximizing the alpha-fairness utility over heterogeneous wireless networks (HetNets) by jointly optimizing user association, wherein each user is associated to any one transmission point (TP) in the network, and activation fractions of all TPs. Activation fraction of a TP is the fraction of the frame duration for which it is active, and together these fractions influence the interference seen in the network. To address this joint optimization problem which we show is NP-hard, we propose an alternating optimization based approach wherein the activation fractions and the user association are optimized in an alternating manner. The subproblem of determining the optimal activation fractions is solved using a provably convergent auxiliary function method. On the other hand, the subproblem of determining the user association is solved via a simple combinatorial algorithm. Meaningful performance guarantees are derived in either case. Simulation results over a practical HetNet topology reveal the superior performance of the proposed algorithms and underscore the significant benefits of the joint optimization. In the final part of the dissertation, we propose a space domain solution to the interference problem. We consider the problem of maximizing system utility by optimizing over the set of user and TP pairs in each subframe, where each user can be served by multiple TPs. To address this optimization problem which is NP-hard, we propose a solution scheme based on difference of submodular function optimization approach. We evaluate our scheme using detailed simulations and show that it performs on par with a much more computationally demanding difference of convex function optimization scheme. Moreover, the proposed scheme performs within a reasonable percentage of the optimal solution. We further demonstrate the advantage of the proposed scheme by studying its performance with variation in different network topology parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fatigue damage in the connections of single mast arm signal support structures is one of the primary safety concerns because collapse could result from fatigue induced cracking. This type of cantilever signal support structures typically has very light damping and excessively large wind-induced vibration have been observed. Major changes related to fatigue design were made in the 2001 AASHTO LRFD Specification for Structural Supports for Highway Signs, Luminaries, and Traffic Signals and supplemental damping devices have been shown to be promising in reducing the vibration response and thus fatigue load demand on mast arm signal support structures. The primary objective of this study is to investigate the effectiveness and optimal use of one type of damping devices termed tuned mass damper (TMD) in vibration response mitigation. Three prototype single mast arm signal support structures with 50-ft, 60-ft, and 70-ft respectively are selected for this numerical simulation study. In order to validate the finite element models for subsequent simulation study, analytical modeling of static deflection response of mast arm of the signal support structures was performed and found to be close to the numerical simulation results from beam element based finite element model. A 3-DOF dynamic model was then built using analytically derived stiffness matrix for modal analysis and time history analysis. The free vibration response and forced (harmonic) vibration response of the mast arm structures from the finite element model are observed to be in good agreement with the finite element analysis results. Furthermore, experimental test result from recent free vibration test of a full-scale 50-ft mast arm specimen in the lab is used to verify the prototype structure’s fundamental frequency and viscous damping ratio. After validating the finite element models, a series of parametric study were conducted to examine the trend and determine optimal use of tuned mass damper on the prototype single mast arm signal support structures by varying the following parameters: mass, frequency, viscous damping ratio, and location of TMD. The numerical simulation study results reveal that two parameters that influence most the vibration mitigation effectiveness of TMD on the single mast arm signal pole structures are the TMD frequency and its viscous damping ratio.