2 resultados para Failure of IndyMac Bank
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Over the past 15 years, the number of international development projects aimed at combating global poverty has increased significantly. Within the water and sanitation sector however, and despite heightened global attention and an increase in the number of infrastructure projects, over 800 million people remain without access to appropriate water and sanitation facilities. The majority of donor aid in the water supply and sanitation sector of developing countries is delivered through standalone projects. The quality of projects at the design and preparation stage is a critical determinant in meeting project objectives. The quality of projects at early stage of design, widely referred to as quality at entry (QAE), however remains unquantified and largely subjective. This research argues that water and sanitation infrastructure projects in the developing world tend to be designed in the absence of a specific set of actions that ensure high QAE, and consequently have relatively high rates of failure. This research analyzes 32 cases of water and sanitation infrastructure projects implemented with partial or full World Bank financing globally from 2000 – 2010. The research uses categorical data analysis, regression analysis and descriptive analysis to examine perceived linkages between project QAE and project development outcomes and determines which upstream project design factors are likely to impact the QAE of international development projects in water supply and sanitation. The research proposes a number of specific design stage actions that can be incorporated into the formal review process of water and sanitation projects financed by the World Bank or other international development partners.
Resumo:
Additive manufacturing, including fused deposition modeling (FDM), is transforming the built world and engineering education. Deep understanding of parts created through FDM technology has lagged behind its adoption in home, work, and academic environments. Properties of parts created from bulk materials through traditional manufacturing are understood well enough to accurately predict their behavior through analytical models. Unfortunately, Additive Manufacturing (AM) process parameters create anisotropy on a scale that fundamentally affects the part properties. Understanding AM process parameters (implemented by program algorithms called slicers) is necessary to predict part behavior. Investigating algorithms controlling print parameters (slicers) revealed stark differences between the generation of part layers. In this work, tensile testing experiments, including a full factorial design, determined that three key factors, width, thickness, infill density, and their interactions, significantly affect the tensile properties of 3D printed test samples.