2 resultados para FUNCTIONAL THEORY CALCULATIONS

em DRUM (Digital Repository at the University of Maryland)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Incorporation of carbon nanostructures in metals is desirable to combine the strongly bonded electrons in the metal and the free electrons in carbon nanostructures that give rise to high ampacity and high conductivity, respectively. Carbon in copper has the potential to impact industries such as: building construction, power generation and transmission, and microelectronics. This thesis focuses on the structure and properties of bulk and thin films of a new material, Cu covetic, that contains carbon in concentrations up to 16 at.%. X-ray photoelectron spectroscopy (XPS) shows C 1s peak with both sp2 and sp3 bonded C measuring up to 3.5 wt.% (16 at.%). High resolution transmission electron microscopy and electron diffraction of bulk covetic samples show a modulated structure of ≈ 1.6 nm along several crystallographic directions in regions that have high C content suggesting that the carbon incorporates into the copper lattice forming a network. Electron energy loss spectra (EELS) from covetics reveal that the level of graphitization from the source material, activated carbon, is maintained in the covetic structure. Bulk Cu covetics have a slight increase in the lattice constant, as well as <111> texturing, or possibly a different structure, compared to pure Cu. Density functional theory calculations predict bonding between C and Cu at the edges and defects of graphene sheets. The electrical resistivity of bulk covetics first increases and then decreases with increasing C content. Cu covetic films were deposited using e-beam and pulsed laser deposition (PLD) at different temperatures. No copper oxide or any allotropes of carbon are present in the films. The e-beam films show enhanced electrical and optical properties when compared to pure Cu films of the same thickness even though no carbon was detected by XPS or EELS. They also have slightly higher ampacity than Cu metal films. EELS analysis of the C-K-edge in the PLD films indicate that graphitic carbon is transferred from the bulk into the films with uniform carbon distribution. PLD films exhibit flatter and higher transmittance curves and sheet resistance two orders of magnitude lower than e-beam films leading to a high figure of merit as transparent conductors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Light absorption by aerosols has a great impact on climate change. A Photoacoustic spectrometer (PA) coupled with aerosol-based classification techniques represents an in situ method that can quantify the light absorption by aerosols in a real time, yet significant differences have been reported using this method versus filter based methods or the so-called difference method based upon light extinction and light scattering measurements. This dissertation focuses on developing calibration techniques for instruments used in measuring the light absorption cross section, including both particle diameter measurements by the differential mobility analyzer (DMA) and light absorption measurements by PA. Appropriate reference materials were explored for the calibration/validation of both measurements. The light absorption of carbonaceous aerosols was also investigated to provide fundamental understanding to the absorption mechanism. The first topic of interest in this dissertation is the development of calibration nanoparticles. In this study, bionanoparticles were confirmed to be a promising reference material for particle diameter as well as ion-mobility. Experimentally, bionanoparticles demonstrated outstanding homogeneity in mobility compared to currently used calibration particles. A numerical method was developed to calculate the true distribution and to explain the broadening of measured distribution. The high stability of bionanoparticles was also confirmed. For PA measurement, three aerosol with spherical or near spherical shapes were investigated as possible candidates for a reference standard: C60, copper and silver. Comparisons were made between experimental photoacoustic absorption data with Mie theory calculations. This resulted in the identification of C60 particles with a mobility diameter of 150 nm to 400 nm as an absorbing standard at wavelengths of 405 nm and 660 nm. Copper particles with a mobility diameter of 80 nm to 300 nm are also shown to be a promising reference candidate at wavelength of 405 nm. The second topic of this dissertation focuses on the investigation of light absorption by carbonaceous particles using PA. Optical absorption spectra of size and mass selected laboratory generated aerosols consisting of black carbon (BC), BC with non-absorbing coating (ammonium sulfate and sodium chloride) and BC with a weakly absorbing coating (brown carbon derived from humic acid) were measured across the visible to near-IR (500 nm to 840 nm). The manner in which BC mixed with each coating material was investigated. The absorption enhancement of BC was determined to be wavelength dependent. Optical absorption spectra were also taken for size and mass selected smoldering smoke produced from six types of commonly seen wood in a laboratory scale apparatus.