4 resultados para FREE-RANGE CHICKEN
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Toxoplasma gondii (T. gondii) is one of the most successful parasites in the world because of its capability of infecting all warm-blooded animals. It has been reported that up to one third of the world population is infected with this parasite. Chickens are recognized as good indicators of the environmental T. gondii oocysts contamination because they obtain food from the ground. Thus, the prevalence of T. gondii in chicken provides more insight related to public health concern from T. gondii. Previous studies have shown a high isolation rate from free-range chickens raised in the United States. The objectives of this study were to evaluate the microbial safety and infection of T. gondii in free-range chickens available at the grocery stores and farms for the consumers to purchase and genotype T. gondii isolates. Chicken hearts were obtained from the local markets and also from the farms raising free- range chickens. Heart juice was obtained from cavities of each heart. Modified agglutination test (MAT) for detection of IgG antibodies was conducted with those heart juice samples with titer of 1:5, 1:25, and 1: 100. Each seropositive heart was pepsin digested and bioassayed into a group of two mice. Six weeks post inoculation (p.i.) mice were bled and euthanized to examine the infection of T. gondii. In addition, multiplex multilocus nested PCR-RFLP was performed to genetically characterize T. gondii isolates with eleven PCR-RFLP markers including SAG1, SAG2, altSAT2, SAG3, BTUB, GRA6, c22-8, c29-a, L358, PK1, and Apico. One hundred fifty from a total of 997 samples (15.0%) were found seropositive for T. gondii. No viable T. gondii was isolated from chicken hearts that were sampled. A total of four genotypes were identified, including one new genotype and three previously identified genotypes. The results suggest that T. gondii oocysts could present in the environment and infect the food animals. T. gondii prevalence in chicken hearts could reflect the environmental contamination of T. gondii and prevalence information can be used to manage T. gondii infection risk.
Resumo:
This research project uses field measurements to investigate the cooling of a triple-junction, photovoltaic cell under natural convection when subjected to various amounts of insolation. The team built an experimental apparatus consisting of a mirror and Fresnel lens to concentrate light onto a triple-junction photovoltaic cell, mounted vertically on a copper heat sink. Measurements were taken year-round to provide a wide range of ambient conditions. A surface was then generated, in MATLAB, using Sparrow’s model for natural convection on a vertical plate under constant heat flux. This surface can be used to find the expected operating temperature of a cell at any location, given the ambient temperature and insolation. This research is an important contribution to the industry because it utilizes field data that represents how a cell would react under normal operation. It also extends the use of a well-known model from a one-sun environment to a multi-sun one.
Resumo:
The delicate balance between the production and disposal of proteins is vital for the changes required in the cell to respond to given stimulus. Ubiquitination is a protein modification with a range of signaling outcomes when ubiquitin is attached to a protein through a highly ordered enzymatic cascade process. Understanding ubiquitination is a growing field and nowadays the application of chemical reactions allows the isolation of quantitative materials for structural studies. Therefore, in this dissertation it is described some of these suitable chemical methodologies to produce an isopeptide bond toward the polymerization of ubiquitin bypassing the enzymatic control with the purpose of showing if these chemical modifications have a direct impact on the structure of ubiquitin. First, the possibility of incorporating non-natural lysine analogs known as mercaptolysines into the polypeptide chain of Ubiquitin was explored when they were attached to ubiquitin by native chemical ligation at its C terminus. The sulfhydryl group was used for the attachment of a paramagnetic label to map the surface of ubiquitin. Second, the condensation catalyzed by silver nitrate was used for the dimer assembly. In particular, the main focus was on examining whether orthogonal protection and deprotection of each monomer have an impact on the reaction yield, since the synthetic strategy has been previously attempted successfully. Third, the formation of ubiquitin dimers was approached by building an inter-ubiquitin linkage mimicking the isopeptide bond with two approaches, the classic disulfide exchange as well as the thiol-ene click reaction by thermal initiation in aqueous conditions. After assembling the dimeric units, they were studied by Nuclear Magnetic Resonance, in order to establish a conformational state profile which depends on the pH conditions. The latter is a very important concept since some ligands have a preferred affinity when the protein-protein hydrophobic patches are in close proximity.
Resumo:
Partial funding for open access provided by the UMD Libraries' Open Access Publishing Fund.