3 resultados para Extreme bounds analysis

em DRUM (Digital Repository at the University of Maryland)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation investigates the connection between spectral analysis and frame theory. When considering the spectral properties of a frame, we present a few novel results relating to the spectral decomposition. We first show that scalable frames have the property that the inner product of the scaling coefficients and the eigenvectors must equal the inverse eigenvalues. From this, we prove a similar result when an approximate scaling is obtained. We then focus on the optimization problems inherent to the scalable frames by first showing that there is an equivalence between scaling a frame and optimization problems with a non-restrictive objective function. Various objective functions are considered, and an analysis of the solution type is presented. For linear objectives, we can encourage sparse scalings, and with barrier objective functions, we force dense solutions. We further consider frames in high dimensions, and derive various solution techniques. From here, we restrict ourselves to various frame classes, to add more specificity to the results. Using frames generated from distributions allows for the placement of probabilistic bounds on scalability. For discrete distributions (Bernoulli and Rademacher), we bound the probability of encountering an ONB, and for continuous symmetric distributions (Uniform and Gaussian), we show that symmetry is retained in the transformed domain. We also prove several hyperplane-separation results. With the theory developed, we discuss graph applications of the scalability framework. We make a connection with graph conditioning, and show the in-feasibility of the problem in the general case. After a modification, we show that any complete graph can be conditioned. We then present a modification of standard PCA (robust PCA) developed by Cand\`es, and give some background into Electron Energy-Loss Spectroscopy (EELS). We design a novel scheme for the processing of EELS through robust PCA and least-squares regression, and test this scheme on biological samples. Finally, we take the idea of robust PCA and apply the technique of kernel PCA to perform robust manifold learning. We derive the problem and present an algorithm for its solution. There is also discussion of the differences with RPCA that make theoretical guarantees difficult.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In quantitative risk analysis, the problem of estimating small threshold exceedance probabilities and extreme quantiles arise ubiquitously in bio-surveillance, economics, natural disaster insurance actuary, quality control schemes, etc. A useful way to make an assessment of extreme events is to estimate the probabilities of exceeding large threshold values and extreme quantiles judged by interested authorities. Such information regarding extremes serves as essential guidance to interested authorities in decision making processes. However, in such a context, data are usually skewed in nature, and the rarity of exceedance of large threshold implies large fluctuations in the distribution's upper tail, precisely where the accuracy is desired mostly. Extreme Value Theory (EVT) is a branch of statistics that characterizes the behavior of upper or lower tails of probability distributions. However, existing methods in EVT for the estimation of small threshold exceedance probabilities and extreme quantiles often lead to poor predictive performance in cases where the underlying sample is not large enough or does not contain values in the distribution's tail. In this dissertation, we shall be concerned with an out of sample semiparametric (SP) method for the estimation of small threshold probabilities and extreme quantiles. The proposed SP method for interval estimation calls for the fusion or integration of a given data sample with external computer generated independent samples. Since more data are used, real as well as artificial, under certain conditions the method produces relatively short yet reliable confidence intervals for small exceedance probabilities and extreme quantiles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coprime and nested sampling are well known deterministic sampling techniques that operate at rates significantly lower than the Nyquist rate, and yet allow perfect reconstruction of the spectra of wide sense stationary signals. However, theoretical guarantees for these samplers assume ideal conditions such as synchronous sampling, and ability to perfectly compute statistical expectations. This thesis studies the performance of coprime and nested samplers in spatial and temporal domains, when these assumptions are violated. In spatial domain, the robustness of these samplers is studied by considering arrays with perturbed sensor locations (with unknown perturbations). Simplified expressions for the Fisher Information matrix for perturbed coprime and nested arrays are derived, which explicitly highlight the role of co-array. It is shown that even in presence of perturbations, it is possible to resolve $O(M^2)$ under appropriate conditions on the size of the grid. The assumption of small perturbations leads to a novel ``bi-affine" model in terms of source powers and perturbations. The redundancies in the co-array are then exploited to eliminate the nuisance perturbation variable, and reduce the bi-affine problem to a linear underdetermined (sparse) problem in source powers. This thesis also studies the robustness of coprime sampling to finite number of samples and sampling jitter, by analyzing their effects on the quality of the estimated autocorrelation sequence. A variety of bounds on the error introduced by such non ideal sampling schemes are computed by considering a statistical model for the perturbation. They indicate that coprime sampling leads to stable estimation of the autocorrelation sequence, in presence of small perturbations. Under appropriate assumptions on the distribution of WSS signals, sharp bounds on the estimation error are established which indicate that the error decays exponentially with the number of samples. The theoretical claims are supported by extensive numerical experiments.