3 resultados para Explosive Eruptions
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Rapid, sensitive and selective detection of chemical hazards and biological pathogens has shown growing importance in the fields of homeland security, public safety and personal health. In the past two decades, efforts have been focusing on performing point-of-care chemical and biological detections using miniaturized biosensors. These sensors convert target molecule binding events into measurable electrical signals for quantifying target molecule concentration. However, the low receptor density and the use of complex surface chemistry in receptors immobilization on transducers are common bottlenecks in the current biosensor development, adding to the cost, complexity and time. This dissertation presents the development of selective macromolecular Tobacco mosaic virus-like particle (TMV VLP) biosensing receptor, and the microsystem integration of VLPs in microfabricated electrochemical biosensors for rapid and performance-enhanced chemical and biological sensing. Two constructs of VLPs carrying different receptor peptides targeting at 2,4,6-trinitrotoluene (TNT) explosive or anti-FLAG antibody are successfully bioengineered. The VLP-based TNT electrochemical sensor utilizes unique diffusion modulation method enabled by biological binding between target TNT and receptor VLP. The method avoids the influence from any interfering species and environmental background signals, making it extremely suitable for directly quantifying the TNT level in a sample. It is also a rapid method that does not need any sensor surface functionalization process. For antibody sensing, the VLPs carrying both antibody binding peptides and cysteine residues are assembled onto the gold electrodes of an impedance microsensor. With two-phase immunoassays, the VLP-based impedance sensor is able to quantify antibody concentrations down to 9.1 ng/mL. A capillary microfluidics and impedance sensor integrated microsystem is developed to further accelerate the process of VLP assembly on sensors and improve the sensitivity. Open channel capillary micropumps and stop-valves facilitate localized and evaporation-assisted VLP assembly on sensor electrodes within 6 minutes. The VLP-functionalized impedance sensor is capable of label-free sensing of antibodies with the detection limit of 8.8 ng/mL within 5 minutes after sensor functionalization, demonstrating great potential of VLP-based sensors for rapid and on-demand chemical and biological sensing.
Resumo:
With the proliferation of new mobile devices and applications, the demand for ubiquitous wireless services has increased dramatically in recent years. The explosive growth in the wireless traffic requires the wireless networks to be scalable so that they can be efficiently extended to meet the wireless communication demands. In a wireless network, the interference power typically grows with the number of devices without necessary coordination among them. On the other hand, large scale coordination is always difficult due to the low-bandwidth and high-latency interfaces between access points (APs) in traditional wireless networks. To address this challenge, cloud radio access network (C-RAN) has been proposed, where a pool of base band units (BBUs) are connected to the distributed remote radio heads (RRHs) via high bandwidth and low latency links (i.e., the front-haul) and are responsible for all the baseband processing. But the insufficient front-haul link capacity may limit the scale of C-RAN and prevent it from fully utilizing the benefits made possible by the centralized baseband processing. As a result, the front-haul link capacity becomes a bottleneck in the scalability of C-RAN. In this dissertation, we explore the scalable C-RAN in the effort of tackling this challenge. In the first aspect of this dissertation, we investigate the scalability issues in the existing wireless networks and propose a novel time-reversal (TR) based scalable wireless network in which the interference power is naturally mitigated by the focusing effects of TR communications without coordination among APs or terminal devices (TDs). Due to this nice feature, it is shown that the system can be easily extended to serve more TDs. Motivated by the nice properties of TR communications in providing scalable wireless networking solutions, in the second aspect of this dissertation, we apply the TR based communications to the C-RAN and discover the TR tunneling effects which alleviate the traffic load in the front-haul links caused by the increment of TDs. We further design waveforming schemes to optimize the downlink and uplink transmissions in the TR based C-RAN, which are shown to improve the downlink and uplink transmission accuracies. Consequently, the traffic load in the front-haul links is further alleviated by the reducing re-transmissions caused by transmission errors. Moreover, inspired by the TR-based C-RAN, we propose the compressive quantization scheme which applies to the uplink of multi-antenna C-RAN so that more antennas can be utilized with the limited front-haul capacity, which provide rich spatial diversity such that the massive TDs can be served more efficiently.
Resumo:
Mathematical models of gene regulation are a powerful tool for understanding the complex features of genetic control. While various modeling efforts have been successful at explaining gene expression dynamics, much less is known about how evolution shapes the structure of these networks. An important feature of gene regulatory networks is their stability in response to environmental perturbations. Regulatory systems are thought to have evolved to exist near the transition between stability and instability, in order to have the required stability to environmental fluctuations while also being able to achieve a wide variety of functions (corresponding to different dynamical patterns). We study a simplified model of gene network evolution in which links are added via different selection rules. These growth models are inspired by recent work on `explosive' percolation which shows that when network links are added through competitive rather than random processes, the connectivity phase transition can be significantly delayed, and when it is reached, it appears to be first order (discontinuous, e.g., going from no failure at all to large expected failure) instead of second order (continuous, e.g., going from no failure at all to very small expected failure). We find that by modifying the traditional framework for networks grown via competitive link addition to capture how gene networks evolve to avoid damage propagation, we also see significant delays in the transition that depend on the selection rules, but the transitions always appear continuous rather than `explosive'.